现有的LIDAR基金​​标记系统具有使用限制。特别是,利达塔格(Lidartag)需要特定的标记放置和基于图像的激光雷达基准标记,要求从一个角度对点云进行采样。结果,随着点云从多个角度采样,基准标记的检测仍然是一个未解决的问题。在这封信中,我们开发了一种新颖的算法来检测多视点云中的基准标记。提出的算法包括两个阶段。首先,感兴趣的区域(ROI)检测发现可能包含基准标记的点簇。具体而言,由于从空间的角度来看,从强度的角度提取ROI的方法是引入的,即从空间角度来看,标记是纸张或薄板的床单,与它们所连接的平面是不可区分的。其次,标记检测验证候选ROI是否包含基金标记,并输出有效ROI中标记的ID号和顶点位置。特别是,将ROI传输到预定义的中间平面,目的是采用球形投影以生成强度图像,然后通过强度图像完成标记检测。提供定性和定量实验结果以验证所提出的算法。代码和结果可在以下网址获得:https://github.com/york-sdcnlab/marker?detection-general
translated by 谷歌翻译
传统的LIDAR射测(LO)系统主要利用从经过的环境获得的几何信息来注册激光扫描并估算Lidar Ego-Motion,而在动态或非结构化环境中可能不可靠。本文提出了Inten-loam,一种低饮用和健壮的激光镜和映射方法,该方法完全利用激光扫描的隐式信息(即几何,强度和时间特征)。扫描点被投影到圆柱形图像上,这些图像有助于促进各种特征的有效和适应性提取,即地面,梁,立面和反射器。我们提出了一种新型基于强度的点登记算法,并将其纳入LIDAR的探光仪,从而使LO系统能够使用几何和强度特征点共同估计LIDAR EGO-MOTION。为了消除动态对象的干扰,我们提出了一种基于时间的动态对象删除方法,以在MAP更新之前过滤它们。此外,使用与时间相关的体素网格滤波器组织并缩减了本地地图,以维持当前扫描和静态局部图之间的相似性。在模拟和实际数据集上进行了广泛的实验。结果表明,所提出的方法在正常驾驶方案中实现了类似或更高的精度W.R.T,在非结构化环境中,最先进的方法优于基于几何的LO。
translated by 谷歌翻译
本文研究了从深度摄像机读数中构建平面区域的多重代表的问题。这个问题对于复杂环境中的地形映射非常重要,并且在腿部运动应用中具有巨大的潜力。为了解决多重平面区域的表征问题,我们提出了一个两阶段的解决方案方案。在第一阶段,嵌入深度图像序列中的平面区域首先单独提取,然后合并以建立一个仅包含所选框架中平面区域的地形图。为了简化适用于腿部机器人立足计划的平面区域的表示,我们在第二阶段通过低维度的多面体进一步近似提取的平面区域。借助多重代表,所提出的方法在准确性和简单性之间取得了巨大的平衡。对RGB-D相机进行了实验验证,以证明所提出的方案的性能。所提出的方案成功地通过多面体以可接受的精度来表征平面区域。更重要的是,在整个测试中,整体感知方案的运行时间小于10ms(即> 100Hz),这强烈说明了本文中我们发展的方法的优势。
translated by 谷歌翻译
目标是在杂乱或Textuleless环境,相机(和多传感器)校准任务中的对象跟踪等问题,以及同时本地化和映射(SLAM)。用于这些任务的目标形状通常是对称的(方形,矩形或圆形),并且适用于结构化的密集传感器数据(例如像素阵列(即,图像)。然而,当使用稀疏传感器数据(例如LIDAR点云)并且遭受LIDAR的量化不确定性时,对称形状导致占用歧义。本文介绍了优化目标形状的概念,以消除LIDAR点云的姿势模糊性。目标被设计成在旋转和平移下的边缘点处引起大梯度,而相对于LIDAR以改善与点云稀疏相关的量化不确定性。此外,考虑到目标形状,我们提出了一种利用目标的几何形状来估计目标顶点的手段,同时全局估计姿势。模拟和实验结果(通过运动捕获系统验证)确认,通过使用最佳形状和全球求解器,即使在部分照明的目标放置30米处,我们也可以在翻译中的厘米误差和几度旋转。所有实现和数据集都可以在https://github.com/umich-bipedlab/optimal_shape_global_pose_estimation中获得。
translated by 谷歌翻译
在这项工作中,我们介绍了一个新颖的全球描述符,称为3D位置识别的稳定三角形描述符(STD)。对于一个三角形,其形状由侧面或包含角度的长度唯一决定。此外,三角形的形状对于刚性转换完全不变。基于此属性,我们首先设计了一种算法,以从3D点云中有效提取本地密钥点,并将这些关键点编码为三角形描述符。然后,通过匹配点云之间描述符的侧面长度(以及其他一些信息)来实现位置识别。从描述符匹配对获得的点对应关系可以在几何验证中进一步使用,从而大大提高了位置识别的准确性。在我们的实验中,我们将我们提出的系统与公共数据集(即Kitti,NCLT和Complex-ublan)和我们自我收集的数据集(即M2DP,扫描上下文)进行了广泛的比较(即M2DP,扫描上下文)(即带有非重复扫描固态激光雷达)。所有定量结果表明,性病具有更强的适应性,并且在其对应物方面的精度有了很大的提高。为了分享我们的发现并为社区做出贡献,我们在GitHub上开放代码:https://github.com/hku-mars/std。
translated by 谷歌翻译
Lidar-based SLAM systems perform well in a wide range of circumstances by relying on the geometry of the environment. However, even mature and reliable approaches struggle when the environment contains structureless areas such as long hallways. To allow the use of lidar-based SLAM in such environments, we propose to add reflector markers in specific locations that would otherwise be difficult. We present an algorithm to reliably detect these markers and two approaches to fuse the detected markers with geometry-based scan matching. The performance of the proposed methods is demonstrated on real-world datasets from several industrial environments.
translated by 谷歌翻译
Multiview检测使用多个校准摄像机,并具有重叠的视野来定位遮挡的行人。在该领域,现有方法通常采用``人类建模 - 聚合''策略。为了找到强大的行人表示,有些人直观地使用检测到的2D边界框的位置,而另一些则使用投影到地面上的整个框架功能。但是,前者不考虑人类的外表,并导致许多歧义,而后者由于缺乏人类躯干和头部的准确高度而遭受投影错误。在本文中,我们提出了一种基于人类点云建模的新行人代表方案。具体而言,使用射线跟踪进行整体人类深度估计,我们将行人建模为直立的,薄的纸板点云。然后,我们通过多个视图汇总了行人纸板的点云以进行最终决定。与现有表示形式相比,提出的方法明确利用人类的外观并通过相对准确的高度估计大大减少投影误差。在两个标准评估基准上,提出的方法取得了非常具竞争力的结果。
translated by 谷歌翻译
位置识别在机器人和车辆的重新定位和循环封闭检测任务中起着至关重要的作用。本文为基于激光雷达的位置识别寻求明确定义的全球描述符。与本地描述符相比,全球描述符在城市道路场景中表现出色,但通常依赖于观点。为此,我们提出了一个简单而坚固的全局描述符,称为壁画,通过利用傅立叶变换和圆形转移技术,可以分解重新访问期间的视点差异,并实现翻译和旋转不变性。此外,还提出了一种快速的两阶段姿势估计方法,以利用从场景中提取的紧凑型2D点云来估计位置回收后的相对姿势。实验表明,在来自多个数据集的不同场景的序列上,壁画表现出比同期方法表现出更好的性能。该代码将在https://github.com/soytony/fresco上公开获取。
translated by 谷歌翻译
确定多个激光痛和相机之间的外在参数对于自主机器人至关重要,尤其是对于固态激光痛,每个LIDAR单元具有很小的视野(FOV)(FOV),并且通常集体使用多个单元。对于360 $^\ circ $机械旋转激光盆,提出了大多数外部校准方法,其中假定FOV与其他LIDAR或相机传感器重叠。很少有研究工作集中在校准小型FOV激光痛和摄像头,也没有提高校准速度。在这项工作中,我们考虑了小型FOV激光痛和相机之间外部校准的问题,目的是缩短总校准时间并进一步提高校准精度。我们首先在LIDAR特征点的提取和匹配中实现自适应体素化技术。这样的过程可以避免在激光痛外校准中冗余创建$ k $ d树,并以比现有方法更可靠和快速提取激光雷达特征点。然后,我们将多个LIDAR外部校准制成LIDAR束调节(BA)问题。通过将成本函数得出最高为二阶,可以进一步提高非线性最小平方问题的求解时间和精度。我们提出的方法已在四个无目标场景和两种类型的固态激光雷达中收集的数据进行了验证,这些扫描模式,密度和FOV完全不同。在八个初始设置下,我们工作的鲁棒性也得到了验证,每个设置包含100个独立试验。与最先进的方法相比,我们的工作提高了激光雷达外部校准的校准速度15倍,激光摄像机外部校准(由50个独立试验产生的平均),同时保持准确,同时保持准确。
translated by 谷歌翻译
激光雷达传感器是在未知环境中同时定位和映射(SLAM)的强大工具,但是它们产生的原始点云是密集的,计算量昂贵,并且不适合下游自治任务(例如运动计划)直接使用。为了与运动计划集成,希望大满贯管道生成轻量级的几何图表示。这样的表示也特别适合人造环境,通常可以将其视为在笛卡尔网格上建造的所谓“曼哈顿世界”。在这项工作中,我们为曼哈顿世界环境提出了一种3D激光雷达大满贯算法,该算法从点云中提取平面特征,以实现轻便,实时的定位和映射。我们的方法生成基于平面的地图,其记忆占其位置的记忆力明显少得多,并且适合于快速碰撞检查运动计划。通过利用曼哈顿世界的假设,我们靶向正交平面的提取,以生成比现有基于平面的LIDAR SLAM方法更结构化和组织的地图。我们证明了我们在高保真的AirSim模拟器以及配备有速蛋白底激光片的地面漫游车的现实实验中。在这两种情况下,我们都能够以匹配10 Hz的传感器速率的速率生成高质量的图和轨迹估计值。
translated by 谷歌翻译
基于传感器的环境感知是自主驾驶系统的关键步骤,多个传感器之间的准确校准起着至关重要的作用。为了校准激光雷达和相机,现有方法通常是先校准相机的固有,然后校准激光雷达和相机的外部。如果在第一阶段无法正确校准摄像机的固有效果,则可以准确地校准激光镜相机外部校准并不容易。由于相机的复杂内部结构以及缺乏对摄像机内在校准的有效定量评估方法,因此在实际校准中,由于摄像机内在参数的微小误差,外部参数校准的准确性通常会降低。为此,我们提出了一种新型的基于目标的关节校准方法,用于摄像机内在和激光摄像机外部参数。首先,我们设计了一个新颖的校准板图案,在棋盘上增加了四个圆形孔,以定位激光姿势。随后,在棋盘板的再投影约束和圆形孔特征下定义的成本函数旨在求解相机的内在参数,失真因子和激光相机外部外部参数。最后,定量和定性实验是在实际和模拟环境中进行的,结果表明该方法可以达到准确性和鲁棒性能。开源代码可在https://github.com/opencalib/jointcalib上获得。
translated by 谷歌翻译
我们在本文中介绍Raillomer,实现实时准确和鲁棒的内径测量和轨道车辆的测绘。 Raillomer从两个Lidars,IMU,火车车程和全球导航卫星系统(GNSS)接收器接收测量。作为前端,来自IMU / Royomer缩放组的估计动作De-Skews DeSoised Point云并为框架到框架激光轨道测量产生初始猜测。作为后端,配制了基于滑动窗口的因子图以共同优化多模态信息。另外,我们利用来自提取的轨道轨道和结构外观描述符的平面约束,以进一步改善对重复结构的系统鲁棒性。为了确保全局常见和更少的模糊映射结果,我们开发了一种两级映射方法,首先以本地刻度执行扫描到地图,然后利用GNSS信息来注册模块。该方法在聚集的数据集上广泛评估了多次范围内的数据集,并且表明Raillomer即使在大或退化的环境中也能提供排入量级定位精度。我们还将Raillomer集成到互动列车状态和铁路监控系统原型设计中,已经部署到实验货量交通铁路。
translated by 谷歌翻译
准确可靠的传感器校准对于在自主驾驶中融合激光雷达和惯性测量至关重要。本文提出了一种新型的3D-LIDAR和姿势传感器的新型三阶段外部校准方法,用于自主驾驶。第一阶段可以通过点云表面特征快速校准传感器之间的外部参数,以便可以将外部参数从大的初始误差范围缩小到很小的时间范围。第二阶段可以基于激光映射空间占用率进一步校准外部参数,同时消除运动失真。在最后阶段,校正了由自动驾驶汽车的平面运动引起的Z轴误差,并最终获得了精确的外部参数。具体而言,该方法利用了道路场景的自然特征,使其独立且易于在大规模条件下应用。现实世界数据集的实验结果证明了我们方法的可靠性和准确性。这些代码是在GitHub网站上开源的。据我们所知,这是第一个专门为自动驾驶设计的开源代码,用于校准激光雷达和姿势传感器外部参数。代码链接是https://github.com/opencalib/lidar2ins。
translated by 谷歌翻译
基于激光传感器的同时定位和映射(SLAM)已被移动机器人和自动驾驶汽车广泛采用。这些大满贯系统需要用有限的计算资源来支持准确的本地化。特别是,点云注册,即,在全球坐标框架中在多个位置收集的多个LIDAR扫描匹配和对齐的过程被视为SLAM的瓶颈步骤。在本文中,我们提出了一种功能过滤算法Pfilter,可以过滤无效的功能,因此可以大大减轻这种瓶颈。同时,由于精心策划的特征点,总体注册精度也得到了提高。我们将PFILTER集成到公认的扫描到映射激光射击轨道框架F-LOAM,并评估其在KITTI数据集中的性能。实验结果表明,pfilter可以删除本地特征图中约48.4%的点,并将扫描中的特征点平均减少19.3%,从而节省每帧的处理时间20.9%。同时,我们将准确性提高了9.4%。
translated by 谷歌翻译
LIDAR点云失真来自移动物体是自动驾驶中的一个重要问题,最近对新兴激光器的出现更加苛刻,这具有前后扫描模式。准确地估计移动物体速度不仅提供跟踪功能,而且还可以通过更准确的移动物体描述来校正点云失真。由于LIDAR测量飞行时间距离但具有稀疏角度分辨率,因此测量在径向测量中精确,但缺乏角度。另一方面,相机提供了密集的角度分辨率。本文提出了基于高斯的激光乐乐和相机融合来估计完整的速度并校正激光雷达失真。提供概率的卡尔曼滤波器框架以跟踪移动物体,估计它们的速度,并同时纠正点云扭曲。框架在真正的道路数据上进行评估,融合方法优于传统的ICP和点云的方法。完整的工作框架是开放的(https://github.com/isee-technology/lidar-with-velocity),以加速新兴激光灯的采用。
translated by 谷歌翻译
在本文中,我们使用两个无监督的学习算法的组合介绍了路边激光雷达物体检测的解决方案。 3D点云数据首先将球形坐标转换成球形坐标并使用散列函数填充到方位角网格矩阵中。之后,RAW LIDAR数据被重新排列成空间 - 时间数据结构,以存储范围,方位角和强度的信息。基于强度信道模式识别,应用动态模式分解方法将点云数据分解成低级背景和稀疏前景。三角算法根据范围信息,自动发现分割值以将移动目标与静态背景分开。在强度和范围背景减法之后,将使用基于密度的检测器检测到前景移动物体,并编码到状态空间模型中以进行跟踪。所提出的模型的输出包括车辆轨迹,可以实现许多移动性和安全应用。该方法针对商业流量数据收集平台进行了验证,并证明了对基础设施激光雷达对象检测的高效可靠的解决方案。与之前的方法相比,该方法直接处理散射和离散点云,所提出的方法可以建立3D测量数据的复杂线性关系较小,这捕获了我们经常需要的空间时间结构。
translated by 谷歌翻译
特征提取和匹配是许多计算机视觉任务的基本部分,例如2D或3D对象检测,识别和注册。众所周知,2D功能提取和匹配已经取得了巨大的成功。不幸的是,在3D领域,由于描述性和效率低下,目前的方法无法支持3D激光雷达传感器在视觉任务中的广泛应用。为了解决此限制,我们提出了一种新颖的3D特征表示方法:3D激光点云的线性关键点表示,称为link3d。 Link3D的新颖性在于它完全考虑了LiDar Point Cloud的特征(例如稀疏性,场景的复杂性),并用其强大的邻居键盘来表示当前关键点,从而对当前关键点的描述提供了强烈的约束。提出的链接3D已在两个公共数据集(即Kitti,Steven VLP16)上进行了评估,实验结果表明,我们的方法在匹配性能方面的最先进表现都大大优于最先进的方法。更重要的是,Link3D显示出出色的实时性能(基于LIDAR的频率10 Hz)。 Link3D平均仅需32毫秒即可从64射线激光束收集的点云中提取功能,并且仅需大约8毫秒即可匹配两次LIDAR扫描,当时用Intel Core i7 @2.2 GHz处理器执行笔记本。此外,我们的方法可以广泛扩展到各种3D视觉应用。在本文中,我们已将Link3D应用于3D注册,LiDAR ODOMETIRE和放置识别任务,并与最先进的方法相比实现了竞争成果。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
在本文中,我们提出了一种从3D点云生成分层的体积拓扑图的方法。我们的地图中有三个基本的分层级别:$ Storey - Region - 卷$。我们的方法的优点在输入和输出中反映。在输入方面,我们接受多层点云和建筑结构,倾斜的屋顶或天花板。在输出方面,我们可以使用不同维度的度量信息来生成结果,适用于不同的机器人应用。算法通过从3D Voxel占用映射生成$卷$来生成体积表示。然后,我们加入$段落$ s($卷$之间的连接),将小$卷$组合成一个大多数$地区$,并使用2D分段方法进行更好的拓扑表示。我们在几个可自由的数据集中评估我们的方法。实验突出了我们的方法的优势。
translated by 谷歌翻译
旋转激光雷达数据对于3D感知任务普遍存在,但尚未研究其圆柱形图像形式。传统方法将扫描视为点云,并且它们依赖于昂贵的欧几里德3D最近邻居搜索数据关联或依赖于投影范围图像以进行进一步处理。我们重新审视LIDAR扫描形成,并呈现来自原始扫描数据的圆柱形范围图像表示,配备有效校准的球形投射模型。通过我们的配方,我们1)收集一个LIDAR数据的大型数据集,包括室内和室外序列,伴随着伪接地的真理姿势;2)评估综合性和现实世界转型的序列上的投影和常规登记方法;3)将最先进的RGB-D算法转移到LIDAR,其运行高达180 Hz的注册和150 Hz以进行密集的重建。数据集和工具将被释放。
translated by 谷歌翻译