在这项工作中,我们介绍了一个新颖的全球描述符,称为3D位置识别的稳定三角形描述符(STD)。对于一个三角形,其形状由侧面或包含角度的长度唯一决定。此外,三角形的形状对于刚性转换完全不变。基于此属性,我们首先设计了一种算法,以从3D点云中有效提取本地密钥点,并将这些关键点编码为三角形描述符。然后,通过匹配点云之间描述符的侧面长度(以及其他一些信息)来实现位置识别。从描述符匹配对获得的点对应关系可以在几何验证中进一步使用,从而大大提高了位置识别的准确性。在我们的实验中,我们将我们提出的系统与公共数据集(即Kitti,NCLT和Complex-ublan)和我们自我收集的数据集(即M2DP,扫描上下文)进行了广泛的比较(即M2DP,扫描上下文)(即带有非重复扫描固态激光雷达)。所有定量结果表明,性病具有更强的适应性,并且在其对应物方面的精度有了很大的提高。为了分享我们的发现并为社区做出贡献,我们在GitHub上开放代码:https://github.com/hku-mars/std。
translated by 谷歌翻译
我们介绍了一种简单而有效的方法,可以使用本地3D深度描述符(L3DS)同时定位和映射解决循环闭合检测。 L3DS正在采用深度学习算法从数据从数据中学到的点云提取的斑块的紧凑型表示。通过在通过其估计的相对姿势向循环候选点云登记之后计算对应于相互最近邻接描述符的点之间的度量误差,提出了一种用于循环检测的新颖重叠度量。这种新方法使我们能够在小重叠的情况下精确地检测环并估计六个自由度。我们将基于L3D的循环闭合方法与最近的LIDAR数据的方法进行比较,实现最先进的环路闭合检测精度。此外,我们嵌入了我们在最近的基于边缘的SLAM系统中的循环闭合方法,并对现实世界RGBD-TUM和合成ICL数据集进行了评估。与其原始环路闭合策略相比,我们的方法能够实现更好的本地化准确性。
translated by 谷歌翻译
位置识别技术赋予了一种大满贯算法,具有消除累积错误并自身重新定位的能力。基于点云的位置识别的现有方法通常利用以激光雷达为中心的全局描述符的匹配。这些方法具有以下两个主要缺陷:当两个点云之间的距离很远时,不能执行位置识别,并且只能计算旋转角度,而无需在x和y方向上偏移。为了解决这两个问题,我们提出了一个新颖的全球描述符,该描述符围绕主要对象构建,以这种方式,描述符不再依赖于观察位置。我们分析了该方法可以完美地解决上述两个问题的理论,并在Kitti和一些极端情况下进行了许多实验,这表明我们的方法比传统方法具有明显的优势。
translated by 谷歌翻译
循环结束是自动移动系统同时本地化和映射(SLAM)的基本组成部分。在视觉大满贯领域,单词袋(弓)在循环封闭方面取得了巨大的成功。循环搜索的弓特征也可以在随后的6-DOF环校正中使用。但是,对于3D激光雷达的猛击,最新方法可能无法实时识别循环,并且通常无法纠正完整的6-DOF回路姿势。为了解决这一限制,我们呈现了一袋新颖的单词,以实时循环在3D LIDAR大满贯中关闭,称为Bow3D。我们方法的新颖性在于,它不仅有效地识别了重新审视的环路,而且还实时纠正了完整的6型循环姿势。 BOW3D根据3D功能link3D构建单词袋,该链接有效,姿势不变,可用于准确的点对点匹配。我们将我们提出的方法嵌入了3D激光射击系统中,以评估循环闭合性能。我们在公共数据集上测试我们的方法,并将其与其他最先进的算法进行比较。在大多数情况下,BOW3D在F1 MAX和扩展精度分数方面表现出更好的性能,并具有出色的实时性能。值得注意的是,BOW3D平均需要50毫秒才能识别和纠正Kitti 00中的循环(包括4K+ 64射线激光扫描),当在使用Intel Core i7 @2.2 GHz处理器的笔记本上执行时。
translated by 谷歌翻译
本文提出了一种有效的概率自适应体素映射方法,用于激光雷达的探光法。该地图是体素的集合;每个都包含一个平面(或边缘)功能,该特征可以实现环境的概率表示以及新的LIDAR扫描的准确配置。我们进一步分析了对粗到1的体素映射的需求,然后使用哈希表和动手组织的新型体素图来有效地构建和更新地图。我们将提出的体素图应用于迭代的扩展卡尔曼滤波器,并为姿势估计构建最大后验概率问题。与其他最先进的方法相比,开放Kitti数据集的实验显示了我们方法的高精度和效率。在具有非重复扫描激光雷达的非结构化环境上进行的室外实验进一步验证了我们的映射方法对不同环境和LIDAR扫描模式的适应性。我们的代码和数据集在GitHub上开源
translated by 谷歌翻译
循环闭合检测是在复杂环境中长期机器人导航的关键技术。在本文中,我们提出了一个全局描述符,称为正态分布描述符(NDD),用于3D点云循环闭合检测。描述符编码点云的概率密度分数和熵作为描述符。我们还提出了快速旋转对准过程,并将相关系数用作描述符之间的相似性。实验结果表明,我们的方法在准确性和效率上都优于最新点云描述符。源代码可用,可以集成到现有的LIDAR射测和映射(壤土)系统中。
translated by 谷歌翻译
由于点云数据的稀缺性质,在大规模环境中使用激光雷达识别使用激光雷达的地方是具有挑战性的。在本文中,我们提出了BVMATCH,基于LIDAR的帧到帧位置识别框架,其能够估计2D相对姿势。基于地面区域可以近似作为平面的假设,我们将地面区域统一地分散到网格和项目3D LIDAR扫描到鸟瞰图(BV)图像。我们进一步使用了一组Log-Gabor过滤器来构建一个最大索引图(MIM),用于编码图像中结构的方向信息。我们从理论上分析MIM的方向特征,并引入了一种名为鸟瞰图特征变换(BVFT)的新颖描述符。所提出的BVFT对BV图像的旋转和强度变化不敏感。利用BVFT描述符,统一LIDAR将识别和将估算任务统一到BVMATCT框架中。在三个大规模数据集上进行的实验表明,BVMATCH在召回的位置识别和姿势估计精度的召回速率方面优于最先进的方法。
translated by 谷歌翻译
本文使用基于实例分割和图形匹配的LIDAR点云进行了极强和轻量级的定位。我们将3D点云建模为在语义上识别的组件的完全连接图,每个顶点对应于对象实例并编码其形状。跨图的最佳顶点关联允许通过测量相似性进行完整的6度自由(DOF)姿势估计和放置识别。这种表示非常简洁,将地图的大小缩合为25倍,而最先进的图像仅需要3KB代表1.4MB激光扫描。我们验证了系统在Semantickitti数据集中的功效,在该数据集中,我们获得了新的最新识别,平均召回了88.4%的召回,而下一个最接近的竞争对手则为64.9%。我们还显示了准确的度量姿势估计性能 - 估计中位误差为10 cm和0.33度的6 -DOF姿势。
translated by 谷歌翻译
特征提取和匹配是许多计算机视觉任务的基本部分,例如2D或3D对象检测,识别和注册。众所周知,2D功能提取和匹配已经取得了巨大的成功。不幸的是,在3D领域,由于描述性和效率低下,目前的方法无法支持3D激光雷达传感器在视觉任务中的广泛应用。为了解决此限制,我们提出了一种新颖的3D特征表示方法:3D激光点云的线性关键点表示,称为link3d。 Link3D的新颖性在于它完全考虑了LiDar Point Cloud的特征(例如稀疏性,场景的复杂性),并用其强大的邻居键盘来表示当前关键点,从而对当前关键点的描述提供了强烈的约束。提出的链接3D已在两个公共数据集(即Kitti,Steven VLP16)上进行了评估,实验结果表明,我们的方法在匹配性能方面的最先进表现都大大优于最先进的方法。更重要的是,Link3D显示出出色的实时性能(基于LIDAR的频率10 Hz)。 Link3D平均仅需32毫秒即可从64射线激光束收集的点云中提取功能,并且仅需大约8毫秒即可匹配两次LIDAR扫描,当时用Intel Core i7 @2.2 GHz处理器执行笔记本。此外,我们的方法可以广泛扩展到各种3D视觉应用。在本文中,我们已将Link3D应用于3D注册,LiDAR ODOMETIRE和放置识别任务,并与最先进的方法相比实现了竞争成果。
translated by 谷歌翻译
位置识别在机器人和车辆的重新定位和循环封闭检测任务中起着至关重要的作用。本文为基于激光雷达的位置识别寻求明确定义的全球描述符。与本地描述符相比,全球描述符在城市道路场景中表现出色,但通常依赖于观点。为此,我们提出了一个简单而坚固的全局描述符,称为壁画,通过利用傅立叶变换和圆形转移技术,可以分解重新访问期间的视点差异,并实现翻译和旋转不变性。此外,还提出了一种快速的两阶段姿势估计方法,以利用从场景中提取的紧凑型2D点云来估计位置回收后的相对姿势。实验表明,在来自多个数据集的不同场景的序列上,壁画表现出比同期方法表现出更好的性能。该代码将在https://github.com/soytony/fresco上公开获取。
translated by 谷歌翻译
基于图形的大量系统的关键组成部分是能够检测轨迹中的环闭合以减少从探视法累积的漂移。大多数基于激光雷达的方法仅通过仅使用几何信息来实现此目标,而无视场景的语义。在这项工作中,我们介绍了Padloc,这是一种基于激光雷达的环路闭合检测和注册体系结构,其中包括共享的3D卷积特征提取主链,用于环路闭合检测的全局描述符,以及用于点云匹配和注册的新型变压器头。我们提出了多种方法,用于估计基于多样性指数的点匹配置信度。此外,为了提高前向后的一致性,我们建议使用两个共享匹配和注册头,并通过利用估计的相对转换必须相互倒数来交换其源和目标输入。此外,我们以新颖的损失函数的形式利用综合信息在培训期间,将匹配问题折叠为语义标签的分类任务,并作为实例标签的图形连接分配。我们在多个现实世界数据集上对PADLOC进行了广泛的评估,证明它可以实现最新的性能。我们的工作代码可在http://padloc.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
循环闭合检测是同时定位和映射(SLAM)系统的重要组成部分,这减少了随时间累积的漂移。多年来,已经提出了一些深入的学习方法来解决这项任务,但是与手工制作技术相比,他们的表现一直是SubPar,特别是在处理反向环的同时。在本文中,我们通过同时识别先前访问的位置并估计当前扫描与地图之间的6-DOF相对变换,有效地检测LIDAR点云中的LINAS点云中的环闭环的新颖LCDNET。 LCDNET由共享编码器组成,一个地方识别头提取全局描述符,以及估计两个点云之间的变换的相对姿势头。我们基于不平衡的最佳运输理论介绍一种新颖的相对姿势,我们以可分散的方式实现,以便实现端到端训练。在多个现实世界自主驾驶数据集中的LCDNET广泛评估表明我们的方法优于最先进的环路闭合检测和点云登记技术,特别是在处理反向环的同时。此外,我们将所提出的循环闭合检测方法集成到LIDAR SLAM库中,以提供完整的映射系统,并在看不见的城市中使用不同的传感器设置展示泛化能力。
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译
激光雷达传感器是在未知环境中同时定位和映射(SLAM)的强大工具,但是它们产生的原始点云是密集的,计算量昂贵,并且不适合下游自治任务(例如运动计划)直接使用。为了与运动计划集成,希望大满贯管道生成轻量级的几何图表示。这样的表示也特别适合人造环境,通常可以将其视为在笛卡尔网格上建造的所谓“曼哈顿世界”。在这项工作中,我们为曼哈顿世界环境提出了一种3D激光雷达大满贯算法,该算法从点云中提取平面特征,以实现轻便,实时的定位和映射。我们的方法生成基于平面的地图,其记忆占其位置的记忆力明显少得多,并且适合于快速碰撞检查运动计划。通过利用曼哈顿世界的假设,我们靶向正交平面的提取,以生成比现有基于平面的LIDAR SLAM方法更结构化和组织的地图。我们证明了我们在高保真的AirSim模拟器以及配备有速蛋白底激光片的地面漫游车的现实实验中。在这两种情况下,我们都能够以匹配10 Hz的传感器速率的速率生成高质量的图和轨迹估计值。
translated by 谷歌翻译
传统的LIDAR射测(LO)系统主要利用从经过的环境获得的几何信息来注册激光扫描并估算Lidar Ego-Motion,而在动态或非结构化环境中可能不可靠。本文提出了Inten-loam,一种低饮用和健壮的激光镜和映射方法,该方法完全利用激光扫描的隐式信息(即几何,强度和时间特征)。扫描点被投影到圆柱形图像上,这些图像有助于促进各种特征的有效和适应性提取,即地面,梁,立面和反射器。我们提出了一种新型基于强度的点登记算法,并将其纳入LIDAR的探光仪,从而使LO系统能够使用几何和强度特征点共同估计LIDAR EGO-MOTION。为了消除动态对象的干扰,我们提出了一种基于时间的动态对象删除方法,以在MAP更新之前过滤它们。此外,使用与时间相关的体素网格滤波器组织并缩减了本地地图,以维持当前扫描和静态局部图之间的相似性。在模拟和实际数据集上进行了广泛的实验。结果表明,所提出的方法在正常驾驶方案中实现了类似或更高的精度W.R.T,在非结构化环境中,最先进的方法优于基于几何的LO。
translated by 谷歌翻译
确定多个激光痛和相机之间的外在参数对于自主机器人至关重要,尤其是对于固态激光痛,每个LIDAR单元具有很小的视野(FOV)(FOV),并且通常集体使用多个单元。对于360 $^\ circ $机械旋转激光盆,提出了大多数外部校准方法,其中假定FOV与其他LIDAR或相机传感器重叠。很少有研究工作集中在校准小型FOV激光痛和摄像头,也没有提高校准速度。在这项工作中,我们考虑了小型FOV激光痛和相机之间外部校准的问题,目的是缩短总校准时间并进一步提高校准精度。我们首先在LIDAR特征点的提取和匹配中实现自适应体素化技术。这样的过程可以避免在激光痛外校准中冗余创建$ k $ d树,并以比现有方法更可靠和快速提取激光雷达特征点。然后,我们将多个LIDAR外部校准制成LIDAR束调节(BA)问题。通过将成本函数得出最高为二阶,可以进一步提高非线性最小平方问题的求解时间和精度。我们提出的方法已在四个无目标场景和两种类型的固态激光雷达中收集的数据进行了验证,这些扫描模式,密度和FOV完全不同。在八个初始设置下,我们工作的鲁棒性也得到了验证,每个设置包含100个独立试验。与最先进的方法相比,我们的工作提高了激光雷达外部校准的校准速度15倍,激光摄像机外部校准(由50个独立试验产生的平均),同时保持准确,同时保持准确。
translated by 谷歌翻译
点对特征(PPF)广泛用于6D姿势估计。在本文中,我们提出了一种基于PPF框架的有效的6D姿势估计方法。我们介绍了一个目标良好的下采样策略,该策略更多地集中在边缘区域,以有效地提取复杂的几何形状。提出了一种姿势假设验证方法来通过计算边缘匹配度来解决对称歧义。我们对两个具有挑战性的数据集和一个现实世界中收集的数据集进行评估,这证明了我们方法对姿势估计几何复杂,遮挡,对称对象的优越性。我们通过将其应用于模拟穿刺来进一步验证我们的方法。
translated by 谷歌翻译
基于LIDAR的位置识别是环路闭合检测和全局重川化的必要和具有挑战性的任务。我们提出了深度扫描上下文(DSC),一般和辨别的全局描述符,捕获点云的段之间的关系。与以前的方法或相邻点云的序列进行以获得更好的地方识别,我们只使用原始点云来获得竞争结果。具体而言,我们首先将点云分段为摄影云,以获取细分的质心和特征值。然后,我们介绍一个图形神经网络,将这些功能聚合到嵌入式表示中。在基提数据集上进行的广泛实验表明,DSC对场景变体具有强大,优于现有方法。
translated by 谷歌翻译
最近的高精度亚次光学光学扫描仪的开发允许将3D键盘检测器和功能描述符在海底环境中的点云扫描上利用。但是,文献缺乏一项全面的调查,无法确定在这些挑战和新颖的环境中使用的检测器和描述符的最佳组合。本文旨在使用使用商业水下激光扫描仪收集的具有挑战性的现场数据集确定最佳的检测器/描述符对。此外,研究表明,合并纹理信息扩展几何特征为合成数据集的特征匹配增添了鲁棒性。本文还提出了一种与水下激光扫描融合图像以产生有色点云的新方法,该方法用于研究6D点云描述符的有效性。
translated by 谷歌翻译
We propose a real-time method for odometry and mapping using range measurements from a 2-axis lidar moving in 6-DOF. The problem is hard because the range measurements are received at different times, and errors in motion estimation can cause mis-registration of the resulting point cloud. To date, coherent 3D maps can be built by off-line batch methods, often using loop closure to correct for drift over time. Our method achieves both low-drift and low-computational complexity without the need for high accuracy ranging or inertial measurements.The key idea in obtaining this level of performance is the division of the complex problem of simultaneous localization and mapping, which seeks to optimize a large number of variables simultaneously, by two algorithms. One algorithm performs odometry at a high frequency but low fidelity to estimate velocity of the lidar. Another algorithm runs at a frequency of an order of magnitude lower for fine matching and registration of the point cloud. Combination of the two algorithms allows the method to map in real-time. The method has been evaluated by a large set of experiments as well as on the KITTI odometry benchmark. The results indicate that the method can achieve accuracy at the level of state of the art offline batch methods.
translated by 谷歌翻译