We propose a real-time method for odometry and mapping using range measurements from a 2-axis lidar moving in 6-DOF. The problem is hard because the range measurements are received at different times, and errors in motion estimation can cause mis-registration of the resulting point cloud. To date, coherent 3D maps can be built by off-line batch methods, often using loop closure to correct for drift over time. Our method achieves both low-drift and low-computational complexity without the need for high accuracy ranging or inertial measurements.The key idea in obtaining this level of performance is the division of the complex problem of simultaneous localization and mapping, which seeks to optimize a large number of variables simultaneously, by two algorithms. One algorithm performs odometry at a high frequency but low fidelity to estimate velocity of the lidar. Another algorithm runs at a frequency of an order of magnitude lower for fine matching and registration of the point cloud. Combination of the two algorithms allows the method to map in real-time. The method has been evaluated by a large set of experiments as well as on the KITTI odometry benchmark. The results indicate that the method can achieve accuracy at the level of state of the art offline batch methods.
translated by 谷歌翻译
传统的LIDAR射测(LO)系统主要利用从经过的环境获得的几何信息来注册激光扫描并估算Lidar Ego-Motion,而在动态或非结构化环境中可能不可靠。本文提出了Inten-loam,一种低饮用和健壮的激光镜和映射方法,该方法完全利用激光扫描的隐式信息(即几何,强度和时间特征)。扫描点被投影到圆柱形图像上,这些图像有助于促进各种特征的有效和适应性提取,即地面,梁,立面和反射器。我们提出了一种新型基于强度的点登记算法,并将其纳入LIDAR的探光仪,从而使LO系统能够使用几何和强度特征点共同估计LIDAR EGO-MOTION。为了消除动态对象的干扰,我们提出了一种基于时间的动态对象删除方法,以在MAP更新之前过滤它们。此外,使用与时间相关的体素网格滤波器组织并缩减了本地地图,以维持当前扫描和静态局部图之间的相似性。在模拟和实际数据集上进行了广泛的实验。结果表明,所提出的方法在正常驾驶方案中实现了类似或更高的精度W.R.T,在非结构化环境中,最先进的方法优于基于几何的LO。
translated by 谷歌翻译
We propose a framework for tightly-coupled lidar inertial odometry via smoothing and mapping, LIO-SAM, that achieves highly accurate, real-time mobile robot trajectory estimation and map-building. LIO-SAM formulates lidar-inertial odometry atop a factor graph, allowing a multitude of relative and absolute measurements, including loop closures, to be incorporated from different sources as factors into the system. The estimated motion from inertial measurement unit (IMU) pre-integration de-skews point clouds and produces an initial guess for lidar odometry optimization. The obtained lidar odometry solution is used to estimate the bias of the IMU. To ensure high performance in real-time, we marginalize old lidar scans for pose optimization, rather than matching lidar scans to a global map. Scan-matching at a local scale instead of a global scale significantly improves the real-time performance of the system, as does the selective introduction of keyframes, and an efficient sliding window approach that registers a new keyframe to a fixed-size set of prior "sub-keyframes." The proposed method is extensively evaluated on datasets gathered from three platforms over various scales and environments.
translated by 谷歌翻译
在本文中,我们评估了八种流行和开源的3D激光雷达和视觉大满贯(同时定位和映射)算法,即壤土,乐高壤土,lio sam,hdl graph,orb slam3,basalt vio和svo2。我们已经设计了室内和室外的实验,以研究以下项目的影响:i)传感器安装位置的影响,ii)地形类型和振动的影响,iii)运动的影响(线性和角速速度的变化)。我们根据相对和绝对姿势误差比较它们的性能。我们还提供了他们所需的计算资源的比较。我们通过我们的多摄像机和多大摄像机室内和室外数据集进行彻底分析和讨论结果,并确定环境案例的最佳性能系统。我们希望我们的发现可以帮助人们根据目标环境选择一个适合其需求的传感器和相应的SLAM算法组合。
translated by 谷歌翻译
在过去的几十年,光探测和测距(LIDAR)技术已被广泛研究作为自我定位与地图强大的替代方案。这些典型地接近状态自运动估计作为非线性优化问题取决于当前点云和地图之间建立的对应关系,无论其范围,局部或全局的。本文提出LiODOM,对于姿态估计和地图建设的新的激光雷达仅里程计和绘图方法中,基于最小化从一组加权点 - 线对应的衍生与本地地图损失函数从该组可用的抽象点云。此外,该工作场所特别强调赋予其快速数据关联的相关地图表示。为了有效地代表了环境,我们提出了一个数据结构与哈希方案相结合,可以快速进入地图的任何部分。 LiODOM通过在公共数据集的一组实验中,对于其媲美针对其它解决方案的装置验证。它的性能上,主板还报告了一个空中平台。
translated by 谷歌翻译
敏捷飞行或穿越不规则地形的激进运动会导致激光扫描中的运动失真,从而降低状态估计和映射。存在一些减轻这种效果的方法,但是对于资源受限的移动机器人来说,它们仍然太简单或计算成本高。为此,本文介绍了直接的激光惯性进程(DLIO),这是一种轻巧的激光惯性射击算法,采用新的粗到精细方法来构建连续的时间轨迹进行精确运动校正。我们方法的关键在于构建一组分析方程,这些方程仅通过时间来参数化,从而实现快速和可行的点。此方法之所以可行,仅仅是因为我们新颖的非线性几何观察者具有强大的收敛性能,该观察者提供了可证明正确的状态估计值来初始化敏感的IMU整合步骤。此外,通过同时执行运动校正和前期,并直接将每次扫描注册到地图并绕过扫描到扫描,DLIO的凝结体系结构在计算上的计算效率比当前最新的ART高20%精度提高12%。我们通过多种公共基准和自收集的数据集进行了广泛的测试,证明了DLIO的出色本地化精度,地图质量和较低的计算开销,与四种最先进的算法相比。
translated by 谷歌翻译
在本文中,我们介绍了一个大型数据集,其中包含各种移动映射传感器,该传感器使用以典型的步行速度携带的手持设备收集了近2.2公里,该设备通过牛津大学的新学院近2.2公里。该数据集包括来自两个市售设备的数据 - 立体惯性摄像头和一个多光束3D激光雷达,该镜头还提供惯性测量。此外,我们使用了三脚架安装的调查级LIDAR扫描仪来捕获测试位置的详细毫米准确的3D地图(包含$ \ sim $ \ sim $ 2.9亿点)。使用地图,我们推断出每次雷达扫描的设备位置的6度自由度(DOF)地面真理,以更好地评估LIDAR和视觉定位,映射和重建系统。这个基础真理是该数据集的特殊新颖贡献,我们认为它将实现许多类似数据集缺乏的系统评估。数据集结合了建筑环境,开放空间和植被区域,以测试本地化和映射系统,例如基于视觉的导航,视觉和激光雷达大满贯,3D激光雷达重建以及基于外观的位置识别。该数据集可在以下网址获得:ori.ox.ac.uk/datasets/newer-college-dataset
translated by 谷歌翻译
基于激光传感器的同时定位和映射(SLAM)已被移动机器人和自动驾驶汽车广泛采用。这些大满贯系统需要用有限的计算资源来支持准确的本地化。特别是,点云注册,即,在全球坐标框架中在多个位置收集的多个LIDAR扫描匹配和对齐的过程被视为SLAM的瓶颈步骤。在本文中,我们提出了一种功能过滤算法Pfilter,可以过滤无效的功能,因此可以大大减轻这种瓶颈。同时,由于精心策划的特征点,总体注册精度也得到了提高。我们将PFILTER集成到公认的扫描到映射激光射击轨道框架F-LOAM,并评估其在KITTI数据集中的性能。实验结果表明,pfilter可以删除本地特征图中约48.4%的点,并将扫描中的特征点平均减少19.3%,从而节省每帧的处理时间20.9%。同时,我们将准确性提高了9.4%。
translated by 谷歌翻译
视觉径图旨在使用视觉传感器捕获的信息跟踪对象的增量运动。在这项工作中,我们研究了点云测量问题,其中仅使用LIDAR(光检测和测距)获得的点云扫描来估计对象的运动轨迹。提出了一种轻量点云测距溶液,并命名为绿点云机径(GPCO)方法。 GPCO是一种无监督的学习方法,可以通过匹配连续点云扫描的特征来预测对象运动。它由三个步骤组成。首先,使用几何特征感知点采样方案来选择来自大点云的判别点。其次,视图被划分为围绕对象的四个区域,并且尖端++方法用于提取点特征。第三,建立点对应,以估计两个连续扫描之间的对象运动。进行了基准数据集的实验,以证明GPCO方法的有效性。据观察,GPCO以准确性的准确性越优于深度学习方法,而模型规模明显较小,培训时间较少。
translated by 谷歌翻译
我们在本文中介绍Raillomer,实现实时准确和鲁棒的内径测量和轨道车辆的测绘。 Raillomer从两个Lidars,IMU,火车车程和全球导航卫星系统(GNSS)接收器接收测量。作为前端,来自IMU / Royomer缩放组的估计动作De-Skews DeSoised Point云并为框架到框架激光轨道测量产生初始猜测。作为后端,配制了基于滑动窗口的因子图以共同优化多模态信息。另外,我们利用来自提取的轨道轨道和结构外观描述符的平面约束,以进一步改善对重复结构的系统鲁棒性。为了确保全局常见和更少的模糊映射结果,我们开发了一种两级映射方法,首先以本地刻度执行扫描到地图,然后利用GNSS信息来注册模块。该方法在聚集的数据集上广泛评估了多次范围内的数据集,并且表明Raillomer即使在大或退化的环境中也能提供排入量级定位精度。我们还将Raillomer集成到互动列车状态和铁路监控系统原型设计中,已经部署到实验货量交通铁路。
translated by 谷歌翻译
本文介绍了在线本地化和彩色网格重建(OLCMR)ROS感知体系结构,用于地面探索机器人,旨在在具有挑战性的未知环境中执行强大的同时定位和映射(SLAM),并实时提供相关的彩色3D网格表示。它旨在被远程人类操作员使用在任务或之后或之后轻松地可视化映射的环境,或作为在勘探机器人技术领域进行进一步研究的开发基础。该体系结构主要由精心挑选的基于激光雷达的SLAM算法的开源ROS实现以及使用点云和RGB摄像机图像投影到3D空间中的彩色表面重建过程。在较新的大学手持式LIDAR-VISION参考数据集上评估了整体表演,并在分别在城市和乡村户外环境中分别在代表性的车轮机器人上收集的两个实验轨迹。索引术语:现场机器人,映射,猛击,彩色表面重建
translated by 谷歌翻译
当视野中有许多移动对象时,基于静态场景假设的SLAM系统会引入重大估计错误。跟踪和维护语义对象有益于场景理解,并为计划和控制模块提供丰富的决策信息。本文介绍了MLO,这是一种多对象的激光雷达探光仪,该镜像仅使用激光雷达传感器跟踪自我运动和语义对象。为了实现对多个对象的准确和强大的跟踪,我们提出了一个最小二乘估计器,该估计器融合了3D边界框和几何点云,用于对象状态更新。通过分析跟踪列表中的对象运动状态,映射模块使用静态对象和环境特征来消除累积错误。同时,它在MAP坐标中提供了连续的对象轨迹。我们的方法在公共Kitti数据集的不同情况下进行了定性和定量评估。实验结果表明,在高度动态,非结构化和未知的语义场景中,MLO的自我定位精度比最先进的系统更好。同时,与基于滤波的方法相比,具有语义几何融合的多目标跟踪方法在跟踪准确性和一致性方面也具有明显的优势。
translated by 谷歌翻译
固态激光雷达比传统的机械多线旋转倍增痛更紧凑,更便宜,这些旋转痛苦在最近在自主驾驶中变得越来越流行。但是,对于这些新的激光雷达传感器,包括严重的运动扭曲,较小的视野和稀疏点云存在一些挑战,这阻碍了它们被广泛用于激光雷达的探测仪。为了解决这些问题,我们为基于Risley Prism基于非重复扫描模式的基于Risley Prism的LIDAR提供了有效的连续时间激光射(ECTLO)方法。为了说明嘈杂的数据,将基于滤波器的平面高斯混合物模型用于强大的注册。此外,采用了仅开激光的连续运动模型来缓解不可避免的扭曲。为了促进隐式数据关联并行,我们将所有MAP点保持在单个范围图像中。使用具有不同扫描模式的固态激光雷达对各种测试床进行了广泛的实验,其有前途的结果证明了我们提出的方法的功效。
translated by 谷歌翻译
This paper presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments -- outdoors, from urban to woodland, and indoors in warehouses and mines - without changing parameters. Our method integrates motion compensation within a sweep with one-to-many scan registration that minimizes distances between nearby oriented surface points and mitigates outliers with a robust loss function. Extending our previous approach CFEAR, we present an in-depth investigation on a wider range of data sets, quantifying the importance of filtering, resolution, registration cost and loss functions, keyframe history, and motion compensation. We present a new solving strategy and configuration that overcomes previous issues with sparsity and bias, and improves our state-of-the-art by 38%, thus, surprisingly, outperforming radar SLAM and approaching lidar SLAM. The most accurate configuration achieves 1.09% error at 5Hz on the Oxford benchmark, and the fastest achieves 1.79% error at 160Hz.
translated by 谷歌翻译
精确和实时轨道车辆本地化以及铁路环境监测对于铁路安全至关重要。在这封信中,我们提出了一种基于多激光器的同时定位和映射(SLAM)系统,用于铁路应用。我们的方法从测量开始预处理,以便去噪并同步多个LIDAR输入。根据LIDAR放置使用不同的帧到框架注册方法。此外,我们利用来自提取的轨道轨道的平面约束来提高系统精度。本地地图进一步与利用绝对位置测量的全局地图对齐。考虑到不可避免的金属磨损和螺杆松动,在手术期间唤醒了在线外在细化。在收集3000公里的数据集上广泛验证了所提出的方法。结果表明,所提出的系统与大规模环境的有效映射一起实现了精确且稳健的本地化。我们的系统已应用于运费交通铁路以监控任务。
translated by 谷歌翻译
通过移动激光扫描和图像构建有色点的云是测量和映射的基本工作。它也是为智能城市建造数字双胞胎的重要先决条件。但是,现有的公共数据集要么是相对较小的规模,要么缺乏准确的几何和彩色地面真理。本文记录了一个名为Polyu-BPComa的多功能数据集,该数据集可独特地定位于移动着色映射。该数据集在背包平台上包含3D激光雷达,球形成像,GNSS和IMU的资源。颜色检查器板在每个调查区域粘贴,因为目标和地面真相数据是由先进的陆地激光扫描仪(TLS)收集的。 3D几何信息和颜色信息可以分别在背包系统和TLS产生的有色点云中恢复。因此,我们提供了一个机会,可以同时为移动多感官系统对映射和着色精度进行基准测试。该数据集的尺寸约为800 GB,涵盖室内和室外环境。数据集和开发套件可在https://github.com/chenpengxin/polyu-bpcoma.git上找到。
translated by 谷歌翻译
本文提出了一种有效的概率自适应体素映射方法,用于激光雷达的探光法。该地图是体素的集合;每个都包含一个平面(或边缘)功能,该特征可以实现环境的概率表示以及新的LIDAR扫描的准确配置。我们进一步分析了对粗到1的体素映射的需求,然后使用哈希表和动手组织的新型体素图来有效地构建和更新地图。我们将提出的体素图应用于迭代的扩展卡尔曼滤波器,并为姿势估计构建最大后验概率问题。与其他最先进的方法相比,开放Kitti数据集的实验显示了我们方法的高精度和效率。在具有非重复扫描激光雷达的非结构化环境上进行的室外实验进一步验证了我们的映射方法对不同环境和LIDAR扫描模式的适应性。我们的代码和数据集在GitHub上开源
translated by 谷歌翻译
感知性挑战性环境中的现场机器人需要快速准确的状态估计,但现代LIDAR传感器迅速压倒电流算法算法。为此,本文介绍了一种轻质前端激光乐曲线液,具有一致和准确的本地化,用于计算限制的机器人平台。我们的直接激光探针内径(DLO)方法包括多个关键算法创新,该创新优先考虑计算效率并实现密集,最小预处理的点云,以实时提供准确的姿态估计。这是通过一种新型密钥帧系统来实现的,该系统还有效地管理历史地图信息,除了用于数据结构回收的快速点云登记的自定义迭代最近的点求解器之外。我们的方法更准确地具有比当前最先进的计算开销更准确,并且在空中和腿机器人的几个感知性挑战环境中广泛地评估了作为美国国家航空航天委员会队队的一部分是美国国家航空航天委员会的一部分的感知挑战性的环境,这是DARPA地铁的研究和开发工作的一部分挑战。
translated by 谷歌翻译
我们提出了一种准确而坚固的多模态传感器融合框架,Metroloc,朝着最极端的场景之一,大规模地铁车辆本地化和映射。 Metroloc在以IMU为中心的状态估计器上构建,以较轻耦合的方法紧密地耦合光检测和测距(LIDAR),视觉和惯性信息。所提出的框架由三个子模块组成:IMU Odometry,LiDar - 惯性内径术(LIO)和视觉惯性内径(VIO)。 IMU被视为主要传感器,从LIO和VIO实现了从LIO和VIO的观察,以限制加速度计和陀螺仪偏差。与以前的点LIO方法相比,我们的方法通过将线路和平面特征引入运动估计来利用更多几何信息。 VIO还通过使用两条线和点来利用环境结构信息。我们所提出的方法在具有维护车辆的长期地铁环境中广泛测试。实验结果表明,该系统比使用实时性能的最先进的方法更准确和强大。此外,我们开发了一系列虚拟现实(VR)应用,以实现高效,经济,互动的轨道车辆状态和轨道基础设施监控,已经部署到室外测试铁路。
translated by 谷歌翻译
同时定位和映射(SLAM)被认为是智能车辆和移动机器人的重要功能。但是,当前的大多数LiDAR SLAM方法都是基于静态环境的假设。因此,在具有多个移动对象的动态环境中的本地化实际上是不可靠的。本文提出了一个动态的SLAM框架RF-LIO,该框架在LIO-SAM上构建,该框架添加了自适应多分辨率范围图像,并使用紧密耦合的LIDAR惯性探测器首先删除移动对象,然后将激光镜扫描与子束相匹配。因此,即使在高动态环境中,它也可以获得准确的姿势。在自收集的数据集和Open UrbanLoco数据集上评估了提出的RF-LIO。高动态环境中的实验结果表明,与壤土和LIO-SAM相比,所提出的RF-LIO的绝对轨迹精度分别可以提高90%和70%。 RF-LIO是高动态环境中最先进的大满贯系统之一。
translated by 谷歌翻译