视觉径图旨在使用视觉传感器捕获的信息跟踪对象的增量运动。在这项工作中,我们研究了点云测量问题,其中仅使用LIDAR(光检测和测距)获得的点云扫描来估计对象的运动轨迹。提出了一种轻量点云测距溶液,并命名为绿点云机径(GPCO)方法。 GPCO是一种无监督的学习方法,可以通过匹配连续点云扫描的特征来预测对象运动。它由三个步骤组成。首先,使用几何特征感知点采样方案来选择来自大点云的判别点。其次,视图被划分为围绕对象的四个区域,并且尖端++方法用于提取点特征。第三,建立点对应,以估计两个连续扫描之间的对象运动。进行了基准数据集的实验,以证明GPCO方法的有效性。据观察,GPCO以准确性的准确性越优于深度学习方法,而模型规模明显较小,培训时间较少。
translated by 谷歌翻译
We propose a real-time method for odometry and mapping using range measurements from a 2-axis lidar moving in 6-DOF. The problem is hard because the range measurements are received at different times, and errors in motion estimation can cause mis-registration of the resulting point cloud. To date, coherent 3D maps can be built by off-line batch methods, often using loop closure to correct for drift over time. Our method achieves both low-drift and low-computational complexity without the need for high accuracy ranging or inertial measurements.The key idea in obtaining this level of performance is the division of the complex problem of simultaneous localization and mapping, which seeks to optimize a large number of variables simultaneously, by two algorithms. One algorithm performs odometry at a high frequency but low fidelity to estimate velocity of the lidar. Another algorithm runs at a frequency of an order of magnitude lower for fine matching and registration of the point cloud. Combination of the two algorithms allows the method to map in real-time. The method has been evaluated by a large set of experiments as well as on the KITTI odometry benchmark. The results indicate that the method can achieve accuracy at the level of state of the art offline batch methods.
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译
本文首先提出了一个有效的3D点云学习架构,名为PWCLO-NET的LIDAR ODOMORY。在该架构中,提出了3D点云的投影感知表示来将原始的3D点云组织成有序数据表单以实现效率。 LIDAR ODOMOMERY任务的金字塔,翘曲和成本量(PWC)结构是为估计和优化在分层和高效的粗良好方法中的姿势。建立一个投影感知的细心成本卷,以直接关联两个离散点云并获得嵌入运动模式。然后,提出了一种可训练的嵌入掩模来称量局部运动模式以回归整体姿势和过滤异常值点。可训练的姿势经线细化模块迭代地与嵌入式掩码进行分层优化,使姿势估计对异常值更加强大。整个架构是全能优化的端到端,实现成本和掩码的自适应学习,并且涉及点云采样和分组的所有操作都是通过投影感知的3D特征学习方法加速。在Kitti Ocomatry DataSet上证明了我们的激光乐队内径架构的卓越性能和有效性。我们的方法优于基于学习的所有基于学习的方法,甚至基于几何的方法,在大多数基于Kitti Odomatry数据集的序列上具有映射优化的遗传。
translated by 谷歌翻译
传统的LIDAR射测(LO)系统主要利用从经过的环境获得的几何信息来注册激光扫描并估算Lidar Ego-Motion,而在动态或非结构化环境中可能不可靠。本文提出了Inten-loam,一种低饮用和健壮的激光镜和映射方法,该方法完全利用激光扫描的隐式信息(即几何,强度和时间特征)。扫描点被投影到圆柱形图像上,这些图像有助于促进各种特征的有效和适应性提取,即地面,梁,立面和反射器。我们提出了一种新型基于强度的点登记算法,并将其纳入LIDAR的探光仪,从而使LO系统能够使用几何和强度特征点共同估计LIDAR EGO-MOTION。为了消除动态对象的干扰,我们提出了一种基于时间的动态对象删除方法,以在MAP更新之前过滤它们。此外,使用与时间相关的体素网格滤波器组织并缩减了本地地图,以维持当前扫描和静态局部图之间的相似性。在模拟和实际数据集上进行了广泛的实验。结果表明,所提出的方法在正常驾驶方案中实现了类似或更高的精度W.R.T,在非结构化环境中,最先进的方法优于基于几何的LO。
translated by 谷歌翻译
如何提取重要点云特征并估计它们之间的姿势仍然是一个具有挑战性的问题,因为点云的固有缺乏结构和暧昧的顺序排列。尽管对大多数3D计算机视觉任务的基于深度学习的方法进行了重大改进,例如对象分类,对象分割和点云注册,但功能之间的一致性在现有的基于学习的流水线上仍然没有吸引力。在本文中,我们提出了一种用于复杂对准场景的新型学习的对齐网络,标题为深度特征一致性,并由三个主模块组成:多尺度图形特征合并网络,用于将几何对应集转换为高维特征,对应加权用于构建多个候选内部子集的模块,以及命名为深度特征匹配的Procrustes方法,用于给出闭合方案来估计相对姿势。作为深度特征匹配模块的最重要步骤,构造每个Inlier子集的特征一致性矩阵以获得其主要向量作为相应子集的含义似然性。我们全面地验证了我们在3DMATCH数据集和基提ODOMOTRY数据集中的方法的鲁棒性和有效性。对于大型室内场景,3DMATCH数据集上的注册结果表明,我们的方法优于最先进的传统和基于学习的方法。对于Kitti户外场景,我们的方法仍然能够降低转换错误。我们还在交叉数据集中探讨其强大的泛化能力。
translated by 谷歌翻译
通过移动激光扫描和图像构建有色点的云是测量和映射的基本工作。它也是为智能城市建造数字双胞胎的重要先决条件。但是,现有的公共数据集要么是相对较小的规模,要么缺乏准确的几何和彩色地面真理。本文记录了一个名为Polyu-BPComa的多功能数据集,该数据集可独特地定位于移动着色映射。该数据集在背包平台上包含3D激光雷达,球形成像,GNSS和IMU的资源。颜色检查器板在每个调查区域粘贴,因为目标和地面真相数据是由先进的陆地激光扫描仪(TLS)收集的。 3D几何信息和颜色信息可以分别在背包系统和TLS产生的有色点云中恢复。因此,我们提供了一个机会,可以同时为移动多感官系统对映射和着色精度进行基准测试。该数据集的尺寸约为800 GB,涵盖室内和室外环境。数据集和开发套件可在https://github.com/chenpengxin/polyu-bpcoma.git上找到。
translated by 谷歌翻译
基于图形的大量系统的关键组成部分是能够检测轨迹中的环闭合以减少从探视法累积的漂移。大多数基于激光雷达的方法仅通过仅使用几何信息来实现此目标,而无视场景的语义。在这项工作中,我们介绍了Padloc,这是一种基于激光雷达的环路闭合检测和注册体系结构,其中包括共享的3D卷积特征提取主链,用于环路闭合检测的全局描述符,以及用于点云匹配和注册的新型变压器头。我们提出了多种方法,用于估计基于多样性指数的点匹配置信度。此外,为了提高前向后的一致性,我们建议使用两个共享匹配和注册头,并通过利用估计的相对转换必须相互倒数来交换其源和目标输入。此外,我们以新颖的损失函数的形式利用综合信息在培训期间,将匹配问题折叠为语义标签的分类任务,并作为实例标签的图形连接分配。我们在多个现实世界数据集上对PADLOC进行了广泛的评估,证明它可以实现最新的性能。我们的工作代码可在http://padloc.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
电线杆和建筑物边缘经常是城市道路上可观察到的对象,为各种计算机视觉任务提供了可靠的提示。为了重复提取它们作为特征并在离散激光镜头框架之间进行注册,我们提出了第一个基于学习的功能分割和LIDAR点云中3D线的描述模型。为了训练我们的模型,而无需耗时和乏味的数据标记过程,我们首先生成了目标线基本外观的合成原始图,并构建一个迭代线自动标记的过程,以逐步完善真实激光扫描的线路标签。我们的分割模型可以在任意规模的扰动下提取线,我们使用共享的EDGECONV编码层共同训练两个分割和描述符头。基于模型,我们可以在没有初始转换提示的情况下构建一个高度可用的全局注册模块,用于点云注册。实验表明,我们基于线的注册方法对基于最先进的方法的方法具有很高的竞争力。我们的代码可在https://github.com/zxrzju/superline3d.git上找到。
translated by 谷歌翻译
感知性挑战性环境中的现场机器人需要快速准确的状态估计,但现代LIDAR传感器迅速压倒电流算法算法。为此,本文介绍了一种轻质前端激光乐曲线液,具有一致和准确的本地化,用于计算限制的机器人平台。我们的直接激光探针内径(DLO)方法包括多个关键算法创新,该创新优先考虑计算效率并实现密集,最小预处理的点云,以实时提供准确的姿态估计。这是通过一种新型密钥帧系统来实现的,该系统还有效地管理历史地图信息,除了用于数据结构回收的快速点云登记的自定义迭代最近的点求解器之外。我们的方法更准确地具有比当前最先进的计算开销更准确,并且在空中和腿机器人的几个感知性挑战环境中广泛地评估了作为美国国家航空航天委员会队队的一部分是美国国家航空航天委员会的一部分的感知挑战性的环境,这是DARPA地铁的研究和开发工作的一部分挑战。
translated by 谷歌翻译
配对点云之间的低空区域使被捕获的特征非常自信,导致尖端模型以质量较差的云登记。除了传统的智慧之外,我们还提出了一个有趣的问题:是否有可能在两个低重叠点云之间利用中间却又错位的图像来增强尖端注册模型的性能?为了回答它,我们提出了一个被称为Imlovenet的低重叠点云对的未对准图像支持的注册网络。 Imlovenet首先学习跨不同模态的三重深特征,然后将这些特征导出到两个阶段分类器中,以逐步获得两个点云之间的高信心重叠区域。因此,软对应关系在预测的重叠区域中得到了很好的确定,从而导致了准确的刚性转换。 Imlovenet易于实现,但有效,因为1)未对准的图像为两个低重叠点云提供了更清晰的重叠信息,以更好地定位重叠零件; 2)它包含某些几何知识,以提取更好的深度特征; 3)它不需要成像设备的外部参数,相对于3D点云的参考框架。对各种基准的广泛定性和定量评估证明了我们的iMlovenet比最新方法的有效性和优越性。
translated by 谷歌翻译
LiDAR mapping is important yet challenging in self-driving and mobile robotics. To tackle such a global point cloud registration problem, DeepMapping converts the complex map estimation into a self-supervised training of simple deep networks. Despite its broad convergence range on small datasets, DeepMapping still cannot produce satisfactory results on large-scale datasets with thousands of frames. This is due to the lack of loop closures and exact cross-frame point correspondences, and the slow convergence of its global localization network. We propose DeepMapping2 by adding two novel techniques to address these issues: (1) organization of training batch based on map topology from loop closing, and (2) self-supervised local-to-global point consistency loss leveraging pairwise registration. Our experiments and ablation studies on public datasets (KITTI, NCLT, and Nebula) demonstrate the effectiveness of our method. Our code will be released.
translated by 谷歌翻译
在本文中,我们介绍了一种新的端到端学习的LIDAR重新定位框架,被称为Pointloc,其仅使用单点云直接姿势作为输入,不需要预先构建的地图。与RGB基于图像的重建化相比,LIDAR帧可以提供有关场景的丰富和强大的几何信息。然而,LIDAR点云是无序的并且非结构化,使得难以为此任务应用传统的深度学习回归模型。我们通过提出一种具有自我关注的小说点风格架构来解决这个问题,从而有效地估计660 {\ DEG} LIDAR输入框架的6-DOF姿势。关于最近发布的巨大恐怖雷达机器人数据集和现实世界机器人实验的扩展实验表明ProposedMethod可以实现准确的重定位化性能。
translated by 谷歌翻译
This paper presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments -- outdoors, from urban to woodland, and indoors in warehouses and mines - without changing parameters. Our method integrates motion compensation within a sweep with one-to-many scan registration that minimizes distances between nearby oriented surface points and mitigates outliers with a robust loss function. Extending our previous approach CFEAR, we present an in-depth investigation on a wider range of data sets, quantifying the importance of filtering, resolution, registration cost and loss functions, keyframe history, and motion compensation. We present a new solving strategy and configuration that overcomes previous issues with sparsity and bias, and improves our state-of-the-art by 38%, thus, surprisingly, outperforming radar SLAM and approaching lidar SLAM. The most accurate configuration achieves 1.09% error at 5Hz on the Oxford benchmark, and the fastest achieves 1.79% error at 160Hz.
translated by 谷歌翻译
当视野中有许多移动对象时,基于静态场景假设的SLAM系统会引入重大估计错误。跟踪和维护语义对象有益于场景理解,并为计划和控制模块提供丰富的决策信息。本文介绍了MLO,这是一种多对象的激光雷达探光仪,该镜像仅使用激光雷达传感器跟踪自我运动和语义对象。为了实现对多个对象的准确和强大的跟踪,我们提出了一个最小二乘估计器,该估计器融合了3D边界框和几何点云,用于对象状态更新。通过分析跟踪列表中的对象运动状态,映射模块使用静态对象和环境特征来消除累积错误。同时,它在MAP坐标中提供了连续的对象轨迹。我们的方法在公共Kitti数据集的不同情况下进行了定性和定量评估。实验结果表明,在高度动态,非结构化和未知的语义场景中,MLO的自我定位精度比最先进的系统更好。同时,与基于滤波的方法相比,具有语义几何融合的多目标跟踪方法在跟踪准确性和一致性方面也具有明显的优势。
translated by 谷歌翻译
强大而准确的本地化是移动自主系统的基本要求。类似杆状的物体,例如交通标志,杆子和灯,由于其局部独特性和长期稳定性,经常使用地标在城市环境中定位。在本文中,我们基于在线运行并且几乎没有计算需求的几何特征,提出了一种新颖,准确,快速的杆提取方法。我们的方法直接对3D LIDAR扫描生成的范围图像执行所有计算,该图像避免了显式处理3D点云,并为每次扫描启用快速的极点提取。我们进一步使用提取的杆子作为伪标签来训练深层神经网络,以基于图像的极点分割。我们测试了我们的几何和基于学习的极点提取方法,用于在不同的扫描仪,路线和季节性变化的不同数据集上定位。实验结果表明,我们的方法表现优于其他最先进的方法。此外,通过从多个数据集提取的伪极标签增强,我们基于学习的方法可以跨不同的数据集运行,并且与基于几何的方法相比,可以实现更好的本地化结果。我们向公众发布了杆数据集,以评估杆的性能以及我们的方法的实施。
translated by 谷歌翻译
单眼相机传感器对于智能车辆操作和自动驾驶帮助至关重要,并且在交通控制基础设施中也很大程度上使用。但是,校准单眼摄像机很耗时,通常需要大量的手动干预。在这项工作中,我们提出了一种外部摄像机校准方法,该方法通过利用来自图像和点云的语义分割信息来自动化参数估计。我们的方法依赖于对摄像头姿势的粗略初始测量,并建立在具有高精度定位的车辆上的雷达传感器上,以捕获相机环境的点云。之后,通过执行语义分段传感器数据的激光镜头到相机的注册来获得相机和世界坐标空间之间的映射。我们在模拟和现实世界中评估了我们的方法,以证明校准结果中的低误差测量值。我们的方法适用于基础设施传感器和车辆传感器,而它不需要摄像机平台的运动。
translated by 谷歌翻译
最近的3D注册方法可以有效处理大规模或部分重叠的点对。然而,尽管具有实用性,但在空间尺度和密度方面与不平衡对匹配。我们提出了一种新颖的3D注册方法,称为uppnet,用于不平衡点对。我们提出了一个层次结构框架,通过逐渐减少搜索空间,可以有效地找到近距离的对应关系。我们的方法预测目标点的子区域可能与查询点重叠。以下超点匹配模块和细粒度的细化模块估计两个点云之间的准确对应关系。此外,我们应用几何约束来完善满足空间兼容性的对应关系。对应性预测是对端到端训练的,我们的方法可以通过单个前向通行率预测适当的刚体转换,并给定点云对。为了验证提出方法的疗效,我们通过增强Kitti LiDAR数据集创建Kitti-UPP数据集。该数据集的实验表明,所提出的方法显着优于最先进的成对点云注册方法,而当目标点云大约为10 $ \ times $ higation时,注册召回率的提高了78%。比查询点云大约比查询点云更密集。
translated by 谷歌翻译
随着自动驾驶行业正在缓慢成熟,视觉地图本地化正在迅速成为尽可能准确定位汽车的标准方法。由于相机或激光镜等视觉传感器返回的丰富数据,研究人员能够构建具有各种细节的不同类型的地图,并使用它们来实现高水平的车辆定位准确性和在城市环境中的稳定性。与流行的SLAM方法相反,视觉地图本地化依赖于预先构建的地图,并且仅通过避免误差积累或漂移来提高定位准确性。我们将视觉地图定位定义为两个阶段的过程。在位置识别的阶段,通过将视觉传感器输出与一组地理标记的地图区域进行比较,可以确定车辆在地图中的初始位置。随后,在MAP指标定位的阶段,通过连续将视觉传感器的输出与正在遍历的MAP的当前区域进行对齐,对车辆在地图上移动时进行了跟踪。在本文中,我们调查,讨论和比较两个阶段的基于激光雷达,基于摄像头和跨模式的视觉图本地化的最新方法,以突出每种方法的优势。
translated by 谷歌翻译
由于范围和几何形状的直接集成,基于激光雷达的本地化和映射是许多现代机器人系统中的核心组件之一,可以实时进行精确的运动估算和​​高质量的高质量图。然而,由于场景中存在不足的环境约束,这种对几何形状的依赖可能导致定位失败,发生在隧道等自对称环境中。这项工作通过提出一种基于神经网络的估计方法来检测机器人操作过程中的(非)本地化性,从而解决了此问题。特别注意扫描到扫描登记的可靠性,因为它是许多激光射击估计管道中的关键组成部分。与以前的主要检测方法相反,该方法通过估算原始传感器测量的可定位性而无需评估基本的注册优化,可以尽早检测失败。此外,由于需要启发式的脱落检测阈值,因此以前的方法在跨环境和传感器类型的概括能力上仍然有限。提出的方法通过从不同环境的集合中学习,从而避免了这个问题,从而使网络在各种情况下运行。此外,该网络专门针对模拟数据进行培训,避免了艰苦的数据收集,以挑战性和退化(通常难以访问)环境。在跨越具有挑战性的环境和两种不同的传感器类型上进行的现场实验中,对所提出的方法进行了测试。观察到的检测性能与特定环境特异性阈值调整后的最新方法相当。
translated by 谷歌翻译