单眼相机传感器对于智能车辆操作和自动驾驶帮助至关重要,并且在交通控制基础设施中也很大程度上使用。但是,校准单眼摄像机很耗时,通常需要大量的手动干预。在这项工作中,我们提出了一种外部摄像机校准方法,该方法通过利用来自图像和点云的语义分割信息来自动化参数估计。我们的方法依赖于对摄像头姿势的粗略初始测量,并建立在具有高精度定位的车辆上的雷达传感器上,以捕获相机环境的点云。之后,通过执行语义分段传感器数据的激光镜头到相机的注册来获得相机和世界坐标空间之间的映射。我们在模拟和现实世界中评估了我们的方法,以证明校准结果中的低误差测量值。我们的方法适用于基础设施传感器和车辆传感器,而它不需要摄像机平台的运动。
translated by 谷歌翻译
随着自动驾驶行业正在缓慢成熟,视觉地图本地化正在迅速成为尽可能准确定位汽车的标准方法。由于相机或激光镜等视觉传感器返回的丰富数据,研究人员能够构建具有各种细节的不同类型的地图,并使用它们来实现高水平的车辆定位准确性和在城市环境中的稳定性。与流行的SLAM方法相反,视觉地图本地化依赖于预先构建的地图,并且仅通过避免误差积累或漂移来提高定位准确性。我们将视觉地图定位定义为两个阶段的过程。在位置识别的阶段,通过将视觉传感器输出与一组地理标记的地图区域进行比较,可以确定车辆在地图中的初始位置。随后,在MAP指标定位的阶段,通过连续将视觉传感器的输出与正在遍历的MAP的当前区域进行对齐,对车辆在地图上移动时进行了跟踪。在本文中,我们调查,讨论和比较两个阶段的基于激光雷达,基于摄像头和跨模式的视觉图本地化的最新方法,以突出每种方法的优势。
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译
传统的LIDAR射测(LO)系统主要利用从经过的环境获得的几何信息来注册激光扫描并估算Lidar Ego-Motion,而在动态或非结构化环境中可能不可靠。本文提出了Inten-loam,一种低饮用和健壮的激光镜和映射方法,该方法完全利用激光扫描的隐式信息(即几何,强度和时间特征)。扫描点被投影到圆柱形图像上,这些图像有助于促进各种特征的有效和适应性提取,即地面,梁,立面和反射器。我们提出了一种新型基于强度的点登记算法,并将其纳入LIDAR的探光仪,从而使LO系统能够使用几何和强度特征点共同估计LIDAR EGO-MOTION。为了消除动态对象的干扰,我们提出了一种基于时间的动态对象删除方法,以在MAP更新之前过滤它们。此外,使用与时间相关的体素网格滤波器组织并缩减了本地地图,以维持当前扫描和静态局部图之间的相似性。在模拟和实际数据集上进行了广泛的实验。结果表明,所提出的方法在正常驾驶方案中实现了类似或更高的精度W.R.T,在非结构化环境中,最先进的方法优于基于几何的LO。
translated by 谷歌翻译
有了来自多个输入模式的信息,基于传感器融合的算法通常在机器人技术中表现出其单模式的表现。带有互补语义和深度信息的相机和激光镜头是复杂驾驶环境中检测任务的典型选择。但是,对于大多数摄像头融合算法,传感器套件的校准将极大地影响性能。更具体地说,检测算法通常需要多个传感器之间的准确几何关系作为输入,并且通常假定这些传感器的内容是同时捕获的。准备此类传感器套件涉及精心设计的校准钻机和准确的同步机制,并且制备过程通常是离线进行的。在这项工作中,提出了一个基于分割的框架,以共同估计摄像机套件校准中的几何和时间参数。首先将语义分割掩码应用于传感器模式,并通过像素双向损失优化校准参数。我们专门合并了来自光流的速度信息,以进行时间参数。由于仅在分割级别进行监督,因此在框架内不需要校准标签。提出的算法在KITTI数据集上进行了测试,结果显示了几何和时间参数的准确实时校准。
translated by 谷歌翻译
LIDAR传感器提供有关周围场景的丰富3D信息,并且对于自动驾驶汽车的任务(例如语义细分,对象检测和跟踪)变得越来越重要。模拟激光雷达传感器的能力将加速自动驾驶汽车的测试,验证和部署,同时降低成本并消除现实情况下的测试风险。为了解决以高保真度模拟激光雷达数据的问题,我们提出了一条管道,该管道利用移动映射系统获得的现实世界点云。基于点的几何表示,更具体地说,已经证明了它们能够在非常大点云中准确对基础表面进行建模的能力。我们引入了一种自适应夹层生成方法,该方法可以准确地对基础3D几何形状进行建模,尤其是对于薄结构。我们还通过在GPU上铸造Ray铸造的同时,在有效处理大点云的同时,我们还开发了更快的时间激光雷达模拟。我们在现实世界中测试了激光雷达的模拟,与基本的碎片和网格划分技术相比,表现出定性和定量结果,证明了我们的建模技术的优势。
translated by 谷歌翻译
多模式传感器的融合在自动驾驶和智能机器人中变得越来越流行,因为它可以比任何单个传感器提供更丰富的信息,从而在复杂的环境中增强可靠性。多传感器外部校准是传感器融合的关键因素之一。但是,由于传感器方式的种类以及对校准目标和人工的需求,这种校准很困难。在本文中,我们通过关注立体相机,热摄像机和激光传感器之间的外部转换,展示了一个新的无目标跨模式校准框架。具体而言,立体声和激光器之间的校准是通过最小化登记误差在3D空间中进行的,而通过优化边缘特征的对齐方式来估计其他两个传感器的热外部传感器。我们的方法不需要专门的目标,并且可以在没有人类相互作用的情况下进行一次镜头进行多传感器校准。实验结果表明,校准框架是准确且适用于一般场景的。
translated by 谷歌翻译
For an autonomous vehicle, the ability to sense its surroundings and to build an overall representation of the environment by fusing different sensor data streams is fundamental. To this end, the poses of all sensors need to be accurately determined. Traditional calibration methods are based on: 1) using targets specifically designed for calibration purposes in controlled environments, 2) optimizing a quality metric of the point clouds collected while traversing an unknown but static environment, or 3) optimizing the match among per-sensor incremental motion observations along a motion path fulfilling special requirements. In real scenarios, however, the online applicability of these methods can be limited, as they are typically highly dynamic, contain degenerate paths, and require fast computations. In this paper, we propose an approach that tackles some of these challenges by formulating the calibration problem as a joint but structured optimization problem of all sensor calibrations that takes as input a summary of the point cloud information consisting of ground points and pole detections. We demonstrate the efficiency and quality of the results of the proposed approach in a set of experiments with LiDAR simulation and real data from an urban trip.
translated by 谷歌翻译
本文提出了一个新颖的框架,用于在参考图中对车辆的实时定位和自负跟踪。核心想法是映射车辆观察到的语义对象,并将其注册到参考图中的相应对象。尽管最近的几项作品利用语义信息进行了跨视图本地化,但这项工作的主要贡献是一种视图不变的公式,该方法使该方法直接适用于可检测到对象的任何观点配置。另一个独特的特征是,由于适用于极端异常相群方案的数据关联方案,环境/对象变化的鲁棒性(例如,关联离群值90%)。为了展示我们的框架,我们考虑了仅使用汽车作为对象将地面车辆定位在参考对象图中的示例。虽然仅使用立体声摄像头用于接地车辆,但我们考虑使用立体声摄像机和激光扫描从地面观点构建了先验地图,并在不同日期捕获的地理参与的空中图像以证明框架对不同方式,观点和观点和观点和观点,观点和观点的稳健性,环境变化。对Kitti数据集的评估表明,在3.7 km的轨迹上,本地化发生在36秒内,其次是在激光雷达参考图中的平均位置误差为8.5 m,在空中对象图中的平均位置误差为8.5 m,其中77%对象是离群值,在71秒内实现定位,平均位置误差为7.9 m。
translated by 谷歌翻译
基于传感器的环境感知是自主驾驶系统的关键步骤,多个传感器之间的准确校准起着至关重要的作用。为了校准激光雷达和相机,现有方法通常是先校准相机的固有,然后校准激光雷达和相机的外部。如果在第一阶段无法正确校准摄像机的固有效果,则可以准确地校准激光镜相机外部校准并不容易。由于相机的复杂内部结构以及缺乏对摄像机内在校准的有效定量评估方法,因此在实际校准中,由于摄像机内在参数的微小误差,外部参数校准的准确性通常会降低。为此,我们提出了一种新型的基于目标的关节校准方法,用于摄像机内在和激光摄像机外部参数。首先,我们设计了一个新颖的校准板图案,在棋盘上增加了四个圆形孔,以定位激光姿势。随后,在棋盘板的再投影约束和圆形孔特征下定义的成本函数旨在求解相机的内在参数,失真因子和激光相机外部外部参数。最后,定量和定性实验是在实际和模拟环境中进行的,结果表明该方法可以达到准确性和鲁棒性能。开源代码可在https://github.com/opencalib/jointcalib上获得。
translated by 谷歌翻译
准确可靠的传感器校准对于在自主驾驶中融合激光雷达和惯性测量至关重要。本文提出了一种新型的3D-LIDAR和姿势传感器的新型三阶段外部校准方法,用于自主驾驶。第一阶段可以通过点云表面特征快速校准传感器之间的外部参数,以便可以将外部参数从大的初始误差范围缩小到很小的时间范围。第二阶段可以基于激光映射空间占用率进一步校准外部参数,同时消除运动失真。在最后阶段,校正了由自动驾驶汽车的平面运动引起的Z轴误差,并最终获得了精确的外部参数。具体而言,该方法利用了道路场景的自然特征,使其独立且易于在大规模条件下应用。现实世界数据集的实验结果证明了我们方法的可靠性和准确性。这些代码是在GitHub网站上开源的。据我们所知,这是第一个专门为自动驾驶设计的开源代码,用于校准激光雷达和姿势传感器外部参数。代码链接是https://github.com/opencalib/lidar2ins。
translated by 谷歌翻译
视觉径图旨在使用视觉传感器捕获的信息跟踪对象的增量运动。在这项工作中,我们研究了点云测量问题,其中仅使用LIDAR(光检测和测距)获得的点云扫描来估计对象的运动轨迹。提出了一种轻量点云测距溶液,并命名为绿点云机径(GPCO)方法。 GPCO是一种无监督的学习方法,可以通过匹配连续点云扫描的特征来预测对象运动。它由三个步骤组成。首先,使用几何特征感知点采样方案来选择来自大点云的判别点。其次,视图被划分为围绕对象的四个区域,并且尖端++方法用于提取点特征。第三,建立点对应,以估计两个连续扫描之间的对象运动。进行了基准数据集的实验,以证明GPCO方法的有效性。据观察,GPCO以准确性的准确性越优于深度学习方法,而模型规模明显较小,培训时间较少。
translated by 谷歌翻译
确定多个激光痛和相机之间的外在参数对于自主机器人至关重要,尤其是对于固态激光痛,每个LIDAR单元具有很小的视野(FOV)(FOV),并且通常集体使用多个单元。对于360 $^\ circ $机械旋转激光盆,提出了大多数外部校准方法,其中假定FOV与其他LIDAR或相机传感器重叠。很少有研究工作集中在校准小型FOV激光痛和摄像头,也没有提高校准速度。在这项工作中,我们考虑了小型FOV激光痛和相机之间外部校准的问题,目的是缩短总校准时间并进一步提高校准精度。我们首先在LIDAR特征点的提取和匹配中实现自适应体素化技术。这样的过程可以避免在激光痛外校准中冗余创建$ k $ d树,并以比现有方法更可靠和快速提取激光雷达特征点。然后,我们将多个LIDAR外部校准制成LIDAR束调节(BA)问题。通过将成本函数得出最高为二阶,可以进一步提高非线性最小平方问题的求解时间和精度。我们提出的方法已在四个无目标场景和两种类型的固态激光雷达中收集的数据进行了验证,这些扫描模式,密度和FOV完全不同。在八个初始设置下,我们工作的鲁棒性也得到了验证,每个设置包含100个独立试验。与最先进的方法相比,我们的工作提高了激光雷达外部校准的校准速度15倍,激光摄像机外部校准(由50个独立试验产生的平均),同时保持准确,同时保持准确。
translated by 谷歌翻译
本文介绍了在线本地化和彩色网格重建(OLCMR)ROS感知体系结构,用于地面探索机器人,旨在在具有挑战性的未知环境中执行强大的同时定位和映射(SLAM),并实时提供相关的彩色3D网格表示。它旨在被远程人类操作员使用在任务或之后或之后轻松地可视化映射的环境,或作为在勘探机器人技术领域进行进一步研究的开发基础。该体系结构主要由精心挑选的基于激光雷达的SLAM算法的开源ROS实现以及使用点云和RGB摄像机图像投影到3D空间中的彩色表面重建过程。在较新的大学手持式LIDAR-VISION参考数据集上评估了整体表演,并在分别在城市和乡村户外环境中分别在代表性的车轮机器人上收集的两个实验轨迹。索引术语:现场机器人,映射,猛击,彩色表面重建
translated by 谷歌翻译
Paris-Carla-3d是由移动激光器和相机系统构建的几个浓彩色点云的数据集。数据由两组具有来自开源Carla模拟器(700百万分)的合成数据和在巴黎市中获取的真实数据(6000万分),因此Paris-Carla-3d的名称。此数据集的一个优点是在开源Carla模拟器中模拟了相同的LIDAR和相机平台,因为用于生产真实数据的开源Carla Simulator。此外,使用Carla的语义标记的手动注释在真实数据上执行,允许将转移方法从合成到实际数据进行测试。该数据集的目的是提供一个具有挑战性的数据集,以评估和改进户外环境3D映射的困难视觉任务的方法:语义分段,实例分段和场景完成。对于每项任务,我们描述了评估协议以及建立基线的实验。
translated by 谷歌翻译
同时定位和映射(SLAM)对于自主机器人(例如自动驾驶汽车,自动无人机),3D映射系统和AR/VR应用至关重要。这项工作提出了一个新颖的LIDAR惯性 - 视觉融合框架,称为R $^3 $ LIVE ++,以实现强大而准确的状态估计,同时可以随时重建光线体图。 R $^3 $ LIVE ++由LIDAR惯性探针(LIO)和视觉惯性探测器(VIO)组成,均为实时运行。 LIO子系统利用从激光雷达的测量值重建几何结构(即3D点的位置),而VIO子系统同时从输入图像中同时恢复了几何结构的辐射信息。 r $^3 $ live ++是基于r $^3 $ live开发的,并通过考虑相机光度校准(例如,非线性响应功能和镜头渐滴)和相机的在线估计,进一步提高了本地化和映射的准确性和映射接触时间。我们对公共和私人数据集进行了更广泛的实验,以将我们提出的系统与其他最先进的SLAM系统进行比较。定量和定性结果表明,我们所提出的系统在准确性和鲁棒性方面对其他系统具有显着改善。此外,为了证明我们的工作的可扩展性,{我们基于重建的辐射图开发了多个应用程序,例如高动态范围(HDR)成像,虚拟环境探索和3D视频游戏。}最后,分享我们的发现和我们的发现和为社区做出贡献,我们在GitHub上公开提供代码,硬件设计和数据集:github.com/hku-mars/r3live
translated by 谷歌翻译
本文介绍了一种新颖的体系结构,用于同时估算高度准确的光流和刚性场景转换,以实现困难的场景,在这种情况下,亮度假设因强烈的阴影变化而违反了亮度假设。如果是旋转物体或移动的光源(例如在黑暗中驾驶汽车遇到的光源),场景的外观通常从一个视图到下一个视图都发生了很大变化。不幸的是,用于计算光学流或姿势的标准方法是基于这样的期望,即场景中特征在视图之间保持恒定。在调查的情况下,这些方法可能经常失败。提出的方法通过组合图像,顶点和正常数据来融合纹理和几何信息,以计算照明不变的光流。通过使用粗到最新的策略,可以学习全球锚定的光流,从而减少了基于伪造的伪相应的影响。基于学习的光学流,提出了第二个体系结构,该体系结构可预测扭曲的顶点和正常地图的稳健刚性变换。特别注意具有强烈旋转的情况,这通常会导致这种阴影变化。因此,提出了一个三步程序,该程序可以利用正态和顶点之间的相关性。该方法已在新创建的数据集上进行了评估,该数据集包含具有强烈旋转和阴影效果的合成数据和真实数据。该数据代表了3D重建中的典型用例,其中该对象通常在部分重建之间以很大的步骤旋转。此外,我们将该方法应用于众所周知的Kitti Odometry数据集。即使由于实现了Brighness的假设,这不是该方法的典型用例,因此,还建立了对标准情况和与其他方法的关系的适用性。
translated by 谷歌翻译
现代计算机视觉已超越了互联网照片集的领域,并进入了物理世界,通过非结构化的环境引导配备摄像头的机器人和自动驾驶汽车。为了使这些体现的代理与现实世界对象相互作用,相机越来越多地用作深度传感器,重建了各种下游推理任务的环境。机器学习辅助的深度感知或深度估计会预测图像中每个像素的距离。尽管已经在深入估算中取得了令人印象深刻的进步,但仍然存在重大挑战:(1)地面真相深度标签很难大规模收集,(2)通常认为相机信息是已知的,但通常是不可靠的,并且(3)限制性摄像机假设很常见,即使在实践中使用了各种各样的相机类型和镜头。在本论文中,我们专注于放松这些假设,并描述将相机变成真正通用深度传感器的最终目标的贡献。
translated by 谷歌翻译
Our dataset provides dense annotations for each scan of all sequences from the KITTI Odometry Benchmark [19]. Here, we show multiple scans aggregated using pose information estimated by a SLAM approach.
translated by 谷歌翻译
几十年来,机器人和手眼校准都一直是研究的目的。尽管当前方法能够精确,可靠地识别机器人运动模型的参数,但它们仍然依赖于外部设备,例如校准对象,标记和/或外部传感器。本文没有试图将记录的测量结果适合已知对象的模型,而是将机器人校准视为离线大满贯问题,其中扫描姿势通过移动的运动学链将扫描姿势链接到空间中的固定点。因此,提出的框架允许使用任意眼睛深度传感器的机器人校准,从而无需任何外部工具就可以实现完全自主的自主校准。我的新方法是利用迭代最接近点算法的修改版本来运行多个3D记录的捆绑调整,以估计运动模型的最佳参数。对系统的详细评估显示在带有各种附着的3D传感器的真实机器人上。提出的结果表明,该系统以其成本的一小部分达到了与专用外部跟踪系统相当的精度。
translated by 谷歌翻译