For an autonomous vehicle, the ability to sense its surroundings and to build an overall representation of the environment by fusing different sensor data streams is fundamental. To this end, the poses of all sensors need to be accurately determined. Traditional calibration methods are based on: 1) using targets specifically designed for calibration purposes in controlled environments, 2) optimizing a quality metric of the point clouds collected while traversing an unknown but static environment, or 3) optimizing the match among per-sensor incremental motion observations along a motion path fulfilling special requirements. In real scenarios, however, the online applicability of these methods can be limited, as they are typically highly dynamic, contain degenerate paths, and require fast computations. In this paper, we propose an approach that tackles some of these challenges by formulating the calibration problem as a joint but structured optimization problem of all sensor calibrations that takes as input a summary of the point cloud information consisting of ground points and pole detections. We demonstrate the efficiency and quality of the results of the proposed approach in a set of experiments with LiDAR simulation and real data from an urban trip.
translated by 谷歌翻译
准确可靠的传感器校准对于在自主驾驶中融合激光雷达和惯性测量至关重要。本文提出了一种新型的3D-LIDAR和姿势传感器的新型三阶段外部校准方法,用于自主驾驶。第一阶段可以通过点云表面特征快速校准传感器之间的外部参数,以便可以将外部参数从大的初始误差范围缩小到很小的时间范围。第二阶段可以基于激光映射空间占用率进一步校准外部参数,同时消除运动失真。在最后阶段,校正了由自动驾驶汽车的平面运动引起的Z轴误差,并最终获得了精确的外部参数。具体而言,该方法利用了道路场景的自然特征,使其独立且易于在大规模条件下应用。现实世界数据集的实验结果证明了我们方法的可靠性和准确性。这些代码是在GitHub网站上开源的。据我们所知,这是第一个专门为自动驾驶设计的开源代码,用于校准激光雷达和姿势传感器外部参数。代码链接是https://github.com/opencalib/lidar2ins。
translated by 谷歌翻译
单眼相机传感器对于智能车辆操作和自动驾驶帮助至关重要,并且在交通控制基础设施中也很大程度上使用。但是,校准单眼摄像机很耗时,通常需要大量的手动干预。在这项工作中,我们提出了一种外部摄像机校准方法,该方法通过利用来自图像和点云的语义分割信息来自动化参数估计。我们的方法依赖于对摄像头姿势的粗略初始测量,并建立在具有高精度定位的车辆上的雷达传感器上,以捕获相机环境的点云。之后,通过执行语义分段传感器数据的激光镜头到相机的注册来获得相机和世界坐标空间之间的映射。我们在模拟和现实世界中评估了我们的方法,以证明校准结果中的低误差测量值。我们的方法适用于基础设施传感器和车辆传感器,而它不需要摄像机平台的运动。
translated by 谷歌翻译
移动机器人应用需要有关平台上各个传感器的几何位置的精确信息。此信息由外部校准参数给出,该参数定义了传感器如何相对于固定参考坐标系的旋转和翻译。错误的校准参数对典型的机器人估计任务有负面影响,例如大满贯。在这项工作中,我们提出了一种新方法,用于在机器人操作过程中连续估计校准参数。参数估计基于点云的匹配,这些点云是由传感器从多个静态观点获取的。因此,我们的方法不需要任何特殊的校准目标,并且适用于可以将测量值转换为点云的任何传感器。我们通过校准由2个LIDAR传感器,3个相机和一个成像雷达传感器组成的多传感器系统来证明我们方法的适用性。
translated by 谷歌翻译
凭借在运动扫描系统生产的LIDAR点云注册的目的,我们提出了一种新颖的轨迹调整程序,可以利用重叠点云和关节集成之间所选可靠的3D点对应关系的自动提取。 (调整)与所有原始惯性和GNSS观察一起。这是使用紧密耦合的方式执行的动态网络方法来执行,这通过在传感器处的错误而不是轨迹等级来实现最佳补偿的轨迹。 3D对应关系被制定为该网络内的静态条件,并且利用校正的轨迹和可能在调整内确定的其他参数,以更高的精度生成注册点云。我们首先描述了选择对应关系以及将它们作为新观察模型作为动态网络插入的方法。然后,我们描述了对具有低成本MEMS惯性传感器的实用空气激光扫描场景中提出框架的性能进行评估。在进行的实验中,建议建立3D对应关系的方法在确定各种几何形状的点对点匹配方面是有效的,例如树木,建筑物和汽车。我们的结果表明,该方法提高了点云登记精度,否则在确定的平台姿态或位置(以标称和模拟的GNSS中断条件)中的错误受到强烈影响,并且可能仅使用总计的一小部分确定未知的触觉角度建立的3D对应数量。
translated by 谷歌翻译
本文介绍了使用腿收割机进行精密收集任务的集成系统。我们的收割机在狭窄的GPS拒绝了森林环境中的自主导航和树抓取了一项挑战性的任务。提出了映射,本地化,规划和控制的策略,并集成到完全自主系统中。任务从使用定制的传感器模块开始使用人员映射感兴趣区域。随后,人类专家选择树木进行收获。然后将传感器模块安装在机器上并用于给定地图内的本地化。规划算法在单路径规划问题中搜索一个方法姿势和路径。我们设计了一个路径,后面的控制器利用腿的收割机的谈判粗糙地形的能力。在达接近姿势时,机器用通用夹具抓住一棵树。此过程重复操作员选择的所有树。我们的系统已经在与树干和自然森林中的测试领域进行了测试。据我们所知,这是第一次在现实环境中运行的全尺寸液压机上显示了这一自主权。
translated by 谷歌翻译
众所周知,在ADAS应用中,需要良好的估计车辆的姿势。本文提出了一种鉴定的2.5D内径术,由此由横摆率传感器和四轮速度传感器衍生的平面内径测量由悬架的线性模型增强。虽然平面内径术的核心是在文献中已经理解的横摆率模型,但我们通过拟合二次传入信号,实现内插,推断和车辆位置的更精细的整合来增强这一点。我们通过DGPS / IMU参考的实验结果表明,该模型提供了与现有方法相比的高精度的内径估计。利用返回车辆参考点高度变化的传感器改变悬架配置,我们定义了车辆悬架的平面模型,从而增加了内径模型。我们提出了一个实验框架和评估标准,通过该标准评估了内径术的良好和与现有方法进行了比较。该测距模型旨在支持众所周知的低速环绕式摄像头系统。因此,我们介绍了一些应用程序结果,该应用结果显示使用所提出的内径术来查看和计算机视觉应用程序的性能提升
translated by 谷歌翻译
在未来几十年中,自动驾驶将普遍存在。闲置在交叉点上提高自动驾驶的安全性,并通过改善交叉点的交通吞吐量来提高效率。在闲置时,路边基础设施通过卸载从车辆到路边基础设施的知觉和计划,在交叉路口远程驾驶自动驾驶汽车。为了实现这一目标,iDriving必须能够以全帧速率以较少100毫秒的尾声处理大量的传感器数据,而无需牺牲准确性。我们描述了算法和优化,使其能够使用准确且轻巧的感知组件实现此目标,该组件是从重叠传感器中得出的复合视图的原因,以及一个共同计划多个车辆的轨迹的计划者。在我们的评估中,闲置始终确保车辆的安全通过,而自动驾驶只能有27%的时间。与其他方法相比,闲置的等待时间还要低5倍,因为它可以实现无流量的交叉点。
translated by 谷歌翻译
Accurate and robust extrinsic calibration is necessary for deploying autonomous systems which need multiple sensors for perception. In this paper, we present a robust system for real-time extrinsic calibration of multiple lidars in vehicle base frame without the need for any fiducial markers or features. We base our approach on matching absolute GNSS and estimated lidar poses in real-time. Comparing rotation components allows us to improve the robustness of the solution than traditional least-square approach comparing translation components only. Additionally, instead of comparing all corresponding poses, we select poses comprising maximum mutual information based on our novel observability criteria. This allows us to identify a subset of the poses helpful for real-time calibration. We also provide stopping criteria for ensuring calibration completion. To validate our approach extensive tests were carried out on data collected using Scania test vehicles (7 sequences for a total of ~ 6.5 Km). The results presented in this paper show that our approach is able to accurately determine the extrinsic calibration for various combinations of sensor setups.
translated by 谷歌翻译
本文通过讨论参加了为期三年的SubT竞赛的六支球队的不同大满贯策略和成果,报道了地下大满贯的现状。特别是,本文有四个主要目标。首先,我们审查团队采用的算法,架构和系统;特别重点是以激光雷达以激光雷达为中心的SLAM解决方案(几乎所有竞争中所有团队的首选方法),异质的多机器人操作(包括空中机器人和地面机器人)和现实世界的地下操作(从存在需要处理严格的计算约束的晦涩之处)。我们不会回避讨论不同SubT SLAM系统背后的肮脏细节,这些系统通常会从技术论文中省略。其次,我们通过强调当前的SLAM系统的可能性以及我们认为与一些良好的系统工程有关的范围来讨论该领域的成熟度。第三,我们概述了我们认为是基本的开放问题,这些问题可能需要进一步的研究才能突破。最后,我们提供了在SubT挑战和相关工作期间生产的开源SLAM实现和数据集的列表,并构成了研究人员和从业人员的有用资源。
translated by 谷歌翻译
几十年来,机器人和手眼校准都一直是研究的目的。尽管当前方法能够精确,可靠地识别机器人运动模型的参数,但它们仍然依赖于外部设备,例如校准对象,标记和/或外部传感器。本文没有试图将记录的测量结果适合已知对象的模型,而是将机器人校准视为离线大满贯问题,其中扫描姿势通过移动的运动学链将扫描姿势链接到空间中的固定点。因此,提出的框架允许使用任意眼睛深度传感器的机器人校准,从而无需任何外部工具就可以实现完全自主的自主校准。我的新方法是利用迭代最接近点算法的修改版本来运行多个3D记录的捆绑调整,以估计运动模型的最佳参数。对系统的详细评估显示在带有各种附着的3D传感器的真实机器人上。提出的结果表明,该系统以其成本的一小部分达到了与专用外部跟踪系统相当的精度。
translated by 谷歌翻译
Micro aerial vehicles (MAVs) hold the potential for performing autonomous and contactless land surveys for the detection of landmines and explosive remnants of war (ERW). Metal detectors are the standard tool, but have to be operated close to and parallel to the terrain. As this requires advanced flight capabilities, they have not been successfully combined with MAVs before. To this end, we present a full system to autonomously survey challenging undulated terrain using a metal detector mounted on a 5 degrees of freedom (DOF) MAV. Based on an online estimate of the terrain, our receding-horizon planner efficiently covers the area, aligning the detector to the surface while considering the kinematic and visibility constraints of the platform. For resilient localization, we propose a factor-graph approach for online fusion of GNSS, IMU and LiDAR measurements. A simulated ablation study shows that the proposed planner reduces coverage duration and improves trajectory smoothness. Real-world flight experiments showcase autonomous mapping of buried metallic objects in undulated and obstructed terrain. The proposed localization approach is resilient to individual sensor degeneracy.
translated by 谷歌翻译
自主车辆的环境感知受其物理传感器范围和算法性能的限制,以及通过降低其对正在进行的交通状况的理解的闭塞。这不仅构成了对安全和限制驾驶速度的重大威胁,而且它也可能导致不方便的动作。智能基础设施系统可以帮助缓解这些问题。智能基础设施系统可以通过在当前交通情况的数字模型的形式提供关于其周围环境的额外详细信息,填补了车辆的感知中的差距并扩展了其视野。数字双胞胎。然而,这种系统的详细描述和工作原型表明其可行性稀缺。在本文中,我们提出了一种硬件和软件架构,可实现这样一个可靠的智能基础架构系统。我们在现实世界中实施了该系统,并展示了它能够创建一个准确的延伸高速公路延伸的数字双胞胎,从而提高了自主车辆超越其车载传感器的极限的感知。此外,我们通过使用空中图像和地球观测方法来评估数字双胞胎的准确性和可靠性,用于产生地面真理数据。
translated by 谷歌翻译
In this paper, we introduce a novel approach for ground plane normal estimation of wheeled vehicles. In practice, the ground plane is dynamically changed due to braking and unstable road surface. As a result, the vehicle pose, especially the pitch angle, is oscillating from subtle to obvious. Thus, estimating ground plane normal is meaningful since it can be encoded to improve the robustness of various autonomous driving tasks (e.g., 3D object detection, road surface reconstruction, and trajectory planning). Our proposed method only uses odometry as input and estimates accurate ground plane normal vectors in real time. Particularly, it fully utilizes the underlying connection between the ego pose odometry (ego-motion) and its nearby ground plane. Built on that, an Invariant Extended Kalman Filter (IEKF) is designed to estimate the normal vector in the sensor's coordinate. Thus, our proposed method is simple yet efficient and supports both camera- and inertial-based odometry algorithms. Its usability and the marked improvement of robustness are validated through multiple experiments on public datasets. For instance, we achieve state-of-the-art accuracy on KITTI dataset with the estimated vector error of 0.39{\deg}. Our code is available at github.com/manymuch/ground_normal_filter.
translated by 谷歌翻译
基于传感器的环境感知是自主驾驶系统的关键步骤,多个传感器之间的准确校准起着至关重要的作用。为了校准激光雷达和相机,现有方法通常是先校准相机的固有,然后校准激光雷达和相机的外部。如果在第一阶段无法正确校准摄像机的固有效果,则可以准确地校准激光镜相机外部校准并不容易。由于相机的复杂内部结构以及缺乏对摄像机内在校准的有效定量评估方法,因此在实际校准中,由于摄像机内在参数的微小误差,外部参数校准的准确性通常会降低。为此,我们提出了一种新型的基于目标的关节校准方法,用于摄像机内在和激光摄像机外部参数。首先,我们设计了一个新颖的校准板图案,在棋盘上增加了四个圆形孔,以定位激光姿势。随后,在棋盘板的再投影约束和圆形孔特征下定义的成本函数旨在求解相机的内在参数,失真因子和激光相机外部外部参数。最后,定量和定性实验是在实际和模拟环境中进行的,结果表明该方法可以达到准确性和鲁棒性能。开源代码可在https://github.com/opencalib/jointcalib上获得。
translated by 谷歌翻译
安装在微空中车辆(MAV)上的地面穿透雷达是有助于协助人道主义陆地间隙的工具。然而,合成孔径雷达图像的质量取决于雷达天线的准确和精确运动估计以及与MAV产生信息性的观点。本文介绍了一个完整的自动空气缩进的合成孔径雷达(GPSAR)系统。该系统由空间校准和时间上同步的工业级传感器套件组成,使得在地面上方,雷达成像和光学成像。自定义任务规划框架允许在地上控制地上的Stripmap和圆形(GPSAR)轨迹的生成和自动执行,以及空中成像调查飞行。基于因子图基于Dual接收机实时运动(RTK)全局导航卫星系统(GNSS)和惯性测量单元(IMU)的测量值,以获得精确,高速平台位置和方向。地面真理实验表明,传感器时机为0.8美元,正如0.1美元的那样,定位率为1 kHz。与具有不确定标题初始化的单个位置因子相比,双位置因子配方可提高高达40%,批量定位精度高达59%。我们的现场试验验证了本地化准确性和精度,使得能够相干雷达测量和检测在沙子中埋入的雷达目标。这验证了作为鸟瞰着地图检测系统的潜力。
translated by 谷歌翻译
多模式传感器的融合在自动驾驶和智能机器人中变得越来越流行,因为它可以比任何单个传感器提供更丰富的信息,从而在复杂的环境中增强可靠性。多传感器外部校准是传感器融合的关键因素之一。但是,由于传感器方式的种类以及对校准目标和人工的需求,这种校准很困难。在本文中,我们通过关注立体相机,热摄像机和激光传感器之间的外部转换,展示了一个新的无目标跨模式校准框架。具体而言,立体声和激光器之间的校准是通过最小化登记误差在3D空间中进行的,而通过优化边缘特征的对齐方式来估计其他两个传感器的热外部传感器。我们的方法不需要专门的目标,并且可以在没有人类相互作用的情况下进行一次镜头进行多传感器校准。实验结果表明,校准框架是准确且适用于一般场景的。
translated by 谷歌翻译
森林中自主冬季导航所固有的挑战包括缺乏可靠的全球导航卫星系统(GNSS)信号,低特征对比度,高照明变化和变化环境。这种类型的越野环境是一个极端的情况,自治车可能会在北部地区遇到。因此,了解对自动导航系统对这种恶劣环境的影响非常重要。为此,我们介绍了一个现场报告分析亚曲率区域中的教导和重复导航,同时受到气象条件的大变化。首先,我们描述了系统,它依赖于点云注册来通过北方林地定位移动机器人,同时构建地图。我们通过在教学和重复模式下在自动导航中进行了在实验中评估了该系统。我们展示了密集的植被扰乱了GNSS信号,使其不适合在森林径中导航。此外,我们突出了在森林走廊中使用点云登记的定位相关的不确定性。我们证明它不是雪降水,而是影响我们系统在环境中定位的能力的积雪。最后,我们从我们的实地运动中揭示了一些经验教训和挑战,以支持在冬季条件下更好的实验工作。
translated by 谷歌翻译
本文介绍了在线本地化和彩色网格重建(OLCMR)ROS感知体系结构,用于地面探索机器人,旨在在具有挑战性的未知环境中执行强大的同时定位和映射(SLAM),并实时提供相关的彩色3D网格表示。它旨在被远程人类操作员使用在任务或之后或之后轻松地可视化映射的环境,或作为在勘探机器人技术领域进行进一步研究的开发基础。该体系结构主要由精心挑选的基于激光雷达的SLAM算法的开源ROS实现以及使用点云和RGB摄像机图像投影到3D空间中的彩色表面重建过程。在较新的大学手持式LIDAR-VISION参考数据集上评估了整体表演,并在分别在城市和乡村户外环境中分别在代表性的车轮机器人上收集的两个实验轨迹。索引术语:现场机器人,映射,猛击,彩色表面重建
translated by 谷歌翻译
This article proposes a method to diminish the pose (position plus attitude) drift experienced by an SVO (Semi-Direct Visual Odometry) based visual navigation system installed onboard a UAV (Unmanned Air Vehicle) by supplementing its pose estimation non linear optimizations with priors based on the outputs of a GNSS (Global Navigation Satellite System) Denied inertial navigation system. The method is inspired in a PI (Proportional Integral) control system, in which the attitude, altitude, and rate of climb inertial outputs act as targets to ensure that the visual estimations do not deviate far from their inertial counterparts. The resulting IA-VNS (Inertially Assisted Visual Navigation System) achieves major reductions in the horizontal position drift inherent to the GNSS-Denied navigation of autonomous fixed wing low SWaP (Size, Weight, and Power) UAVs. Additionally, the IA-VNS can be considered as a virtual incremental position (ground velocity) sensor capable of providing observations to the inertial filter. Stochastic high fidelity Monte Carlo simulations of two representative scenarios involving the loss of GNSS signals are employed to evaluate the results and to analyze their sensitivity to the terrain type overflown by the aircraft as well as to the quality of the onboard sensors on which the priors are based. The author releases the C ++ implementation of both the navigation algorithms and the high fidelity simulation as open-source software.
translated by 谷歌翻译