这项工作描述了使用配备有单个向上的鱼眼相机和背光的移动校准机器人,该机器人的自动注册(约40个)固定网络(约40个)的固定,天花板安装的环境相机(约800平方米)的自动注册(约800平方米) Aruco标记以容易检测。 Fisheye摄像头用于进行视觉进程(VO),Aruco标记有助于在环境摄像机中轻松检测校准机器人。此外,鱼眼摄像机还能够检测到环境相机。这个双向双向检测限制了环境摄像机的姿势以解决优化问题。这种方法可用于自动注册用于监视,自动停车或机器人应用的大型多摄像机系统。这种基于VO的多机登记方法是使用现实世界实验进行了广泛验证的,并且还与使用LIDAR的类似方法进行了比较,该方法使用LIDAR(一种昂贵,更重,更重,饥饿的传感器)。
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译
In this paper, we present a novel benchmark for the evaluation of RGB-D SLAM systems. We recorded a large set of image sequences from a Microsoft Kinect with highly accurate and time-synchronized ground truth camera poses from a motion capture system. The sequences contain both the color and depth images in full sensor resolution (640 × 480) at video frame rate (30 Hz). The ground-truth trajectory was obtained from a motion-capture system with eight high-speed tracking cameras (100 Hz). The dataset consists of 39 sequences that were recorded in an office environment and an industrial hall. The dataset covers a large variety of scenes and camera motions. We provide sequences for debugging with slow motions as well as longer trajectories with and without loop closures. Most sequences were recorded from a handheld Kinect with unconstrained 6-DOF motions but we also provide sequences from a Kinect mounted on a Pioneer 3 robot that was manually navigated through a cluttered indoor environment. To stimulate the comparison of different approaches, we provide automatic evaluation tools both for the evaluation of drift of visual odometry systems and the global pose error of SLAM systems. The benchmark website [1] contains all data, detailed descriptions of the scenes, specifications of the data formats, sample code, and evaluation tools.
translated by 谷歌翻译
我们介绍了DLR行星立体声,固态激光雷达,惯性(S3LI)数据集,记录在埃特纳山上,西西里山(Sicily),一种类似于月球和火星的环境,使用手持式传感器套件,适用于适用于空间上的属性 - 像移动漫游器。环境的特征是关于视觉和结构外观的具有挑战性的条件:严重的视觉混叠,对视觉大满贯系统执行位置识别的能力构成了重大限制,而缺乏出色的结构细节,与有​​限的视野相连在利用的固态激光雷达传感器中,仅使用点云就挑战了传统的激光雷达大满贯。借助此数据,涵盖了在软火山斜坡上超过4公里的旅行,我们的目标是:1)提供一种工具来揭示有关环境的最先进的大满贯系统的限制,而环境并未广泛存在可用的数据集和2)激励开发新颖的本地化和映射方法,这些方法有效地依赖于两个传感器的互补功能。数据集可在以下URL上访问:https://rmc.dlr.de/s3li_dataset
translated by 谷歌翻译
本文通过讨论参加了为期三年的SubT竞赛的六支球队的不同大满贯策略和成果,报道了地下大满贯的现状。特别是,本文有四个主要目标。首先,我们审查团队采用的算法,架构和系统;特别重点是以激光雷达以激光雷达为中心的SLAM解决方案(几乎所有竞争中所有团队的首选方法),异质的多机器人操作(包括空中机器人和地面机器人)和现实世界的地下操作(从存在需要处理严格的计算约束的晦涩之处)。我们不会回避讨论不同SubT SLAM系统背后的肮脏细节,这些系统通常会从技术论文中省略。其次,我们通过强调当前的SLAM系统的可能性以及我们认为与一些良好的系统工程有关的范围来讨论该领域的成熟度。第三,我们概述了我们认为是基本的开放问题,这些问题可能需要进一步的研究才能突破。最后,我们提供了在SubT挑战和相关工作期间生产的开源SLAM实现和数据集的列表,并构成了研究人员和从业人员的有用资源。
translated by 谷歌翻译
在本文中,我们评估了八种流行和开源的3D激光雷达和视觉大满贯(同时定位和映射)算法,即壤土,乐高壤土,lio sam,hdl graph,orb slam3,basalt vio和svo2。我们已经设计了室内和室外的实验,以研究以下项目的影响:i)传感器安装位置的影响,ii)地形类型和振动的影响,iii)运动的影响(线性和角速速度的变化)。我们根据相对和绝对姿势误差比较它们的性能。我们还提供了他们所需的计算资源的比较。我们通过我们的多摄像机和多大摄像机室内和室外数据集进行彻底分析和讨论结果,并确定环境案例的最佳性能系统。我们希望我们的发现可以帮助人们根据目标环境选择一个适合其需求的传感器和相应的SLAM算法组合。
translated by 谷歌翻译
几十年来,机器人和手眼校准都一直是研究的目的。尽管当前方法能够精确,可靠地识别机器人运动模型的参数,但它们仍然依赖于外部设备,例如校准对象,标记和/或外部传感器。本文没有试图将记录的测量结果适合已知对象的模型,而是将机器人校准视为离线大满贯问题,其中扫描姿势通过移动的运动学链将扫描姿势链接到空间中的固定点。因此,提出的框架允许使用任意眼睛深度传感器的机器人校准,从而无需任何外部工具就可以实现完全自主的自主校准。我的新方法是利用迭代最接近点算法的修改版本来运行多个3D记录的捆绑调整,以估计运动模型的最佳参数。对系统的详细评估显示在带有各种附着的3D传感器的真实机器人上。提出的结果表明,该系统以其成本的一小部分达到了与专用外部跟踪系统相当的精度。
translated by 谷歌翻译
结合同时定位和映射(SLAM)估计和动态场景建模可以高效地在动态环境中获得机器人自主权。机器人路径规划和障碍避免任务依赖于场景中动态对象运动的准确估计。本文介绍了VDO-SLAM,这是一种强大的视觉动态对象感知SLAM系统,用于利用语义信息,使得能够在场景中进行准确的运动估计和跟踪动态刚性物体,而无需任何先前的物体形状或几何模型的知识。所提出的方法识别和跟踪环境中的动态对象和静态结构,并将这些信息集成到统一的SLAM框架中。这导致机器人轨迹的高度准确估计和对象的全部SE(3)运动以及环境的时空地图。该系统能够从对象的SE(3)运动中提取线性速度估计,为复杂的动态环境中的导航提供重要功能。我们展示了所提出的系统对许多真实室内和室外数据集的性能,结果表明了对最先进的算法的一致和实质性的改进。可以使用源代码的开源版本。
translated by 谷歌翻译
同时本地化和映射(SLAM)是自动移动机器人中的基本问题之一,在该机器人需要重建以前看不见的环境的同时,同时在地图上进行了本身。特别是,Visual-Slam使用移动机器人中的各种传感器来收集和感测地图的表示。传统上,基于几何模型的技术被用来解决大满贯问题,在充满挑战的环境下,该问题往往容易出错。诸如深度学习技术之类的计算机视觉方面的最新进展提供了一种数据驱动的方法来解决视觉范围问题。这篇综述总结了使用各种基于学习的方法的视觉 - 峰领域的最新进展。我们首先提供了基于几何模型的方法的简洁概述,然后进行有关SLAM当前范式的技术评论。然后,我们介绍了从移动机器人那里收集感官输入并执行场景理解的各种基于学习的方法。讨论并将基于深度学习的语义理解中的当前范式讨论并置于视觉峰的背景下。最后,我们讨论了在视觉 - 峰中基于学习的方法方向上的挑战和进一步的机会。
translated by 谷歌翻译
同时定位和映射(SLAM)对于自主机器人(例如自动驾驶汽车,自动无人机),3D映射系统和AR/VR应用至关重要。这项工作提出了一个新颖的LIDAR惯性 - 视觉融合框架,称为R $^3 $ LIVE ++,以实现强大而准确的状态估计,同时可以随时重建光线体图。 R $^3 $ LIVE ++由LIDAR惯性探针(LIO)和视觉惯性探测器(VIO)组成,均为实时运行。 LIO子系统利用从激光雷达的测量值重建几何结构(即3D点的位置),而VIO子系统同时从输入图像中同时恢复了几何结构的辐射信息。 r $^3 $ live ++是基于r $^3 $ live开发的,并通过考虑相机光度校准(例如,非线性响应功能和镜头渐滴)和相机的在线估计,进一步提高了本地化和映射的准确性和映射接触时间。我们对公共和私人数据集进行了更广泛的实验,以将我们提出的系统与其他最先进的SLAM系统进行比较。定量和定性结果表明,我们所提出的系统在准确性和鲁棒性方面对其他系统具有显着改善。此外,为了证明我们的工作的可扩展性,{我们基于重建的辐射图开发了多个应用程序,例如高动态范围(HDR)成像,虚拟环境探索和3D视频游戏。}最后,分享我们的发现和我们的发现和为社区做出贡献,我们在GitHub上公开提供代码,硬件设计和数据集:github.com/hku-mars/r3live
translated by 谷歌翻译
对自主导航和室内应用程序勘探机器人的最新兴趣刺激了对室内同时定位和映射(SLAM)机器人系统的研究。尽管大多数这些大满贯系统使用视觉和激光雷达传感器与探针传感器同时使用,但这些探针传感器会随着时间的流逝而漂移。为了打击这种漂移,视觉大满贯系统部署计算和内存密集型搜索算法来检测“环闭合”,这使得轨迹估计在全球范围内保持一致。为了绕过这些资源(计算和内存)密集算法,我们提出了VIWID,该算法将WiFi和视觉传感器集成在双层系统中。这种双层方法将局部和全局轨迹估计的任务分开,从而使VIWID资源有效,同时实现PAR或更好的性能到最先进的视觉大满贯。我们在四个数据集上展示了VIWID的性能,涵盖了超过1500 m的遍历路径,并分别显示出4.3倍和4倍的计算和记忆消耗量与最先进的视觉和LIDAR SLAM SLAM系统相比,具有PAR SLAM性能。
translated by 谷歌翻译
近年来我们目睹了巨大进展的动机,本文提出了对协作同时定位和映射(C-SLAM)主题的科学文献的调查,也称为多机器人猛击。随着地平线上的自动驾驶车队和工业应用中的多机器人系统的兴起,我们相信合作猛击将很快成为未来机器人应用的基石。在本调查中,我们介绍了C-Slam的基本概念,并呈现了彻底的文献综述。我们还概述了C-Slam在鲁棒性,通信和资源管理方面的主要挑战和限制。我们通过探索该地区目前的趋势和有前途的研究途径得出结论。
translated by 谷歌翻译
在未知和大规模的地下环境中,与一组异质的移动机器人团队进行搜救,需要高精度的本地化和映射。在复杂和感知衰落的地下环境中,这一至关重要的需求面临许多挑战,因为在船上感知系统需要在非警官条件下运作(由于黑暗和灰尘,坚固而泥泞的地形以及自我的存在以及自我的存在,都需要运作。 - 类似和模棱两可的场景)。在灾难响应方案和缺乏有关环境的先前信息的情况下,机器人必须依靠嘈杂的传感器数据并执行同时定位和映射(SLAM)来构建环境的3D地图,并定位自己和潜在的幸存者。为此,本文报告了Team Costar在DARPA Subterranean Challenge的背景下开发的多机器人大满贯系统。我们通过合并一个可适应不同的探针源和激光镜配置的单机器人前端界面来扩展以前的工作,即LAMP,这是一种可伸缩的多机前端,以支持大型大型和内部旋转循环闭合检测检测规模环境和多机器人团队,以及基于渐变的非凸度的稳健后端,配备了异常弹性姿势图优化。我们提供了有关多机器人前端和后端的详细消融研究,并评估美国跨矿山,发电厂和洞穴收集的挑战现实世界中的整体系统性能。我们还发布了我们的多机器人后端数据集(以及相应的地面真相),可以作为大规模地下大满贯的具有挑战性的基准。
translated by 谷歌翻译
Integration of multiple sensor modalities and deep learning into Simultaneous Localization And Mapping (SLAM) systems are areas of significant interest in current research. Multi-modality is a stepping stone towards achieving robustness in challenging environments and interoperability of heterogeneous multi-robot systems with varying sensor setups. With maplab 2.0, we provide a versatile open-source platform that facilitates developing, testing, and integrating new modules and features into a fully-fledged SLAM system. Through extensive experiments, we show that maplab 2.0's accuracy is comparable to the state-of-the-art on the HILTI 2021 benchmark. Additionally, we showcase the flexibility of our system with three use cases: i) large-scale (approx. 10 km) multi-robot multi-session (23 missions) mapping, ii) integration of non-visual landmarks, and iii) incorporating a semantic object-based loop closure module into the mapping framework. The code is available open-source at https://github.com/ethz-asl/maplab.
translated by 谷歌翻译
传统的LIDAR射测(LO)系统主要利用从经过的环境获得的几何信息来注册激光扫描并估算Lidar Ego-Motion,而在动态或非结构化环境中可能不可靠。本文提出了Inten-loam,一种低饮用和健壮的激光镜和映射方法,该方法完全利用激光扫描的隐式信息(即几何,强度和时间特征)。扫描点被投影到圆柱形图像上,这些图像有助于促进各种特征的有效和适应性提取,即地面,梁,立面和反射器。我们提出了一种新型基于强度的点登记算法,并将其纳入LIDAR的探光仪,从而使LO系统能够使用几何和强度特征点共同估计LIDAR EGO-MOTION。为了消除动态对象的干扰,我们提出了一种基于时间的动态对象删除方法,以在MAP更新之前过滤它们。此外,使用与时间相关的体素网格滤波器组织并缩减了本地地图,以维持当前扫描和静态局部图之间的相似性。在模拟和实际数据集上进行了广泛的实验。结果表明,所提出的方法在正常驾驶方案中实现了类似或更高的精度W.R.T,在非结构化环境中,最先进的方法优于基于几何的LO。
translated by 谷歌翻译
本文介绍了在线本地化和彩色网格重建(OLCMR)ROS感知体系结构,用于地面探索机器人,旨在在具有挑战性的未知环境中执行强大的同时定位和映射(SLAM),并实时提供相关的彩色3D网格表示。它旨在被远程人类操作员使用在任务或之后或之后轻松地可视化映射的环境,或作为在勘探机器人技术领域进行进一步研究的开发基础。该体系结构主要由精心挑选的基于激光雷达的SLAM算法的开源ROS实现以及使用点云和RGB摄像机图像投影到3D空间中的彩色表面重建过程。在较新的大学手持式LIDAR-VISION参考数据集上评估了整体表演,并在分别在城市和乡村户外环境中分别在代表性的车轮机器人上收集的两个实验轨迹。索引术语:现场机器人,映射,猛击,彩色表面重建
translated by 谷歌翻译
在本文中,我们提出了一个与RGB,深度,IMU和结构化平面信息融合的紧密耦合的大满贯系统。传统的基于稀疏点的大满贯系统始终保持大量地图点以建模环境。大量的地图点使我们具有很高的计算复杂性,因此很难在移动设备上部署。另一方面,平面是人造环境中的常见结构,尤其是在室内环境中。我们通常可以使用少量飞机代表大型场景。因此,本文的主要目的是降低基于稀疏点的大满贯的高复杂性。我们构建了一个轻巧的后端地图,该地图由几个平面和地图点组成,以相等或更高的精度实现有效的捆绑捆绑调整(BA)。我们使用统计约束来消除优化中众多平面点的参数,并降低BA的复杂性。我们将同构和点对平面约束的参数和测量分开,并压缩测量部分,以进一步有效地提高BA的速度。我们还将平面信息集成到整个系统中,以实现强大的平面特征提取,数据关联和全球一致的平面重建。最后,我们进行消融研究,并用模拟和真实环境数据中的类似方法比较我们的方法。我们的系统在准确性和效率方面具有明显的优势。即使平面参数参与了优化,我们也可以使用平面结构有效地简化后端图。全局捆绑捆绑调整的速度几乎是基于稀疏点的SLAM算法的2倍。
translated by 谷歌翻译
去中心化的国家估计是GPS贬低的地区自动空中群体系统中最基本的组成部分之一,但它仍然是一个极具挑战性的研究主题。本文提出了Omni-swarm,一种分散的全向视觉惯性-UWB状态估计系统,用于解决这一研究利基市场。为了解决可观察性,复杂的初始化,准确性不足和缺乏全球一致性的问题,我们在Omni-warm中引入了全向感知前端。它由立体宽型摄像机和超宽带传感器,视觉惯性探测器,基于多无人机地图的本地化以及视觉无人机跟踪算法组成。前端的测量值与后端的基于图的优化融合在一起。所提出的方法可实现厘米级的相对状态估计精度,同时确保空中群中的全球一致性,这是实验结果证明的。此外,在没有任何外部设备的情况下,可以在全面的无人机间碰撞方面支持,表明全旋转的潜力是自动空中群的基础。
translated by 谷歌翻译
我们提供了一种基于因子图优化的多摄像性视觉惯性内径系统,该系统通过同时使用所有相机估计运动,同时保留固定的整体特征预算。我们专注于在挑战环境中的运动跟踪,例如狭窄的走廊,具有侵略性动作的黑暗空间,突然的照明变化。这些方案导致传统的单眼或立体声测量失败。在理论上,使用额外的相机跟踪运动,但它会导致额外的复杂性和计算负担。为了克服这些挑战,我们介绍了两种新的方法来改善多相机特征跟踪。首先,除了从一体相机移动到另一个相机时,我们连续地跟踪特征的代替跟踪特征。这提高了准确性并实现了更紧凑的因子图表示。其次,我们选择跨摄像机的跟踪功能的固定预算,以降低反向结束优化时间。我们发现,使用较小的信息性功能可以保持相同的跟踪精度。我们所提出的方法使用由IMU和四个摄像机(前立体网和两个侧面)组成的硬件同步装置进行广泛测试,包括:地下矿,大型开放空间,以及带狭窄楼梯和走廊的建筑室内设计。与立体声最新的视觉惯性内径测量方法相比,我们的方法将漂移率,相对姿势误差,高达80%的翻译和旋转39%降低。
translated by 谷歌翻译
This paper presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments -- outdoors, from urban to woodland, and indoors in warehouses and mines - without changing parameters. Our method integrates motion compensation within a sweep with one-to-many scan registration that minimizes distances between nearby oriented surface points and mitigates outliers with a robust loss function. Extending our previous approach CFEAR, we present an in-depth investigation on a wider range of data sets, quantifying the importance of filtering, resolution, registration cost and loss functions, keyframe history, and motion compensation. We present a new solving strategy and configuration that overcomes previous issues with sparsity and bias, and improves our state-of-the-art by 38%, thus, surprisingly, outperforming radar SLAM and approaching lidar SLAM. The most accurate configuration achieves 1.09% error at 5Hz on the Oxford benchmark, and the fastest achieves 1.79% error at 160Hz.
translated by 谷歌翻译