在本文中,我们在下闭合的凸套装上重新审视了在线非单调的DR-Submodular Mavimivel问题,该凸套装在机器学习,经济学和操作研究的领域中找到了广泛的现实世界应用。首先,我们以$ o(\ sqrt {t})$的价格呈现元MFW算法,价格为$ t^{3/2} $每回合。据我们所知,Meta-MFW是第一个获得$ 1/e $ - regret $ o(\ sqrt {t})$的算法放。此外,与ODC算法\ citep {thang2021online}形成鲜明对比的是,meta-mfw依赖于简单的在线线性甲骨文而无需离散化,提升或舍入操作。考虑到实用限制,我们然后提出了单声道-MFW算法,该算法将每个功能的随机梯度评估从$ t^{3/2} $减少到1,并实现$ 1/e $ -e $ -e-regret BOND $ O(t ^{4/5})$。接下来,我们将Mono-MFW扩展到Bandit设置,并提出Bandit-MFW算法,该算法获得了$ 1/e $ - regret键的$ O(t^{8/9})$。据我们所知,Mono-MFW和Bandit-MFW是第一个探索在线非占用dr dr-submodumarmimization thy pownlosed convex set的sumblinear-regret算法,可以探索单发和强盗设置。最后,我们对合成数据集和现实数据集进行了数值实验,以验证我们方法的有效性。
translated by 谷歌翻译
最大化单调性函数是机器学习,经济学和统计数据中的一项基本任务。在本文中,我们提出了单调连续DR-submodular最大化问题的两种通信效率分散的在线算法,这两者都减少了函数梯度评估的数量,并从$ t^{3/2}中降低了每轮的通信复杂性$至$ 1 $。第一个,单发的分散式元弗兰克 - 沃尔夫(Mono-dmfw),达到了$(1-1/e)$ - 遗憾的是$ o(t^{4/5})$。据我们所知,这是单调连续DR-submodular Maximization的第一个单发和无投射分散的在线算法。接下来,受到非界化的增强功能\ citep {zhang2022boosting}的启发,我们提出了分散的在线增强梯度上升(dobga)算法,该算法获得了$(1-1/e)$ - 遗憾的是$(\ sqrt {\ sqrt { t})$。据我们所知,这是获得$(1-1/e)$的最佳$ o(\ sqrt {t})$的第一个结果步。最后,各种实验结果证实了所提出的方法的有效性。
translated by 谷歌翻译
在本文中,我们在离线和在线设置中重新审视受约束和随机连续的子模块最大化。对于每个$ \ gamma $ -weakly dr-subsodular函数$ f $,我们使用因子显示优化方程来获得最佳辅助函数$ f $,其静止点提供$(1-e ^ { - \ gamma} )$ - 近似于全局最大值(表示为$ OPT $)的问题$ \ max _ {\ boldsymbol {x} \ in \ mathcal {c}} f(\ boldsymbol {x})$。当然,预计(镜子)渐变上升依赖于这种非忽视功能实现$(1-e ^ { - \ gamma} - \ epsilon ^ {2})Opt- \ epsilon $ o在$ o(1 / \ epsilon ^ {2})$迭代,击败传统$(\ frac {\ gamma ^ {2}} {1+ \ gamma ^ {2}})$ - 近似渐变上升\ citep {hassani2017gradientient},用于子模块的最大化。同样,基于$ F $,配备veriance减少技术的经典弗兰克 - 沃尔夫算法\ citep {mokhtari2018conditional}也返回一个大于$大于$(1-e ^ { - \ gamma} - \ epsilon ^ {2的解决方案})OPT- \ epsilon $ o $ o(1 / \ epsilon ^ {3})$迭代。在在线设置中,我们首先考虑随机梯度反馈的对抗延迟,我们提出了一种促进了具有相同非忽视搜索的在线梯度算法,实现了$ \ sqrt {d} $的遗憾(其中$ d $ where梯度反馈延迟的总和(1-e ^ { - \ gamma})$ - 近似到后智中最佳可行解决方案。最后,广泛的数值实验表明了我们提升方法的效率。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
连续DR-unmodular函数是一类通常的非凸/非凹形功能,满足递减的回报(DR)属性,这意味着它们沿着非负方向凹入。现有的工作已经研究了单调连续的DR-unmodular最大化,经过凸起约束,提供了有效的算法,具有近似保证。在许多应用中,例如计算图的稳定性数,单调DR-unmodular物镜函数具有沿非负方向强烈凹入的额外性质(即,强烈的DR-SUBSOCULAL)。在本文中,我们考虑了一个US $-$-Smotone DR-unmodular函数的子类,它强烈博弈潜水函数并具有有界曲率,我们展示了如何利用这种额外的结构来获得更快的算法,以获得更高的保证对最大化的保证更快问题。我们提出了一种新的算法,该算法仅在仅$ \ lceil \ frac {l} {\ mu} \ rceil $迭代之后匹配可怕的最佳$ 1- \ frac {c} {e} $近似比。[0, 1] $和$ \ mu \ geq 0 $是曲率和强大的DR-subsodularity参数。此外,我们研究了这个问题的投影梯度上升(PGA)方法,并通过改进的$ \ FRAC {1} {1 + C} $近似比(与$ \ FRAC {1}相比提供了对算法的精细分析{2} $在现有作品中)和线性收敛速度。实验结果说明了我们所提出的算法的效率和有效性。
translated by 谷歌翻译
我们在非静止环境中调查在线凸优化,然后选择\ emph {动态后悔}作为性能测量,定义为在线算法产生的累积损失与任何可行比较器序列之间的差异。让$ t $是$ p_t $ be的路径长度,基本上反映了环境的非平稳性,最先进的动态遗憾是$ \ mathcal {o}(\ sqrt {t( 1 + p_t)})$。虽然这一界限被证明是凸函数最佳的最低限度,但在本文中,我们证明可以进一步提高一些简单的问题实例的保证,特别是当在线功能平滑时。具体而言,我们提出了新的在线算法,可以利用平滑度并替换动态遗憾的$ t $替换依据\ {问题依赖性}数量:损耗函数梯度的变化,比较器序列的累积损失,以及比较器序列的累积损失最低术语的最低限度。这些数量是大多数$ \ mathcal {o}(t)$,良性环境中可能更小。因此,我们的结果适应了问题的内在难度,因为边界比现有结果更严格,以便在最坏的情况下保证相同的速率。值得注意的是,我们的算法只需要\ emph {一个}渐变,这与开发的方法共享相同的渐变查询复杂性,以优化静态遗憾。作为进一步的应用,我们将来自全信息设置的结果扩展到具有两点反馈的强盗凸优化,从而达到此类强盗任务的第一个相关的动态遗憾。
translated by 谷歌翻译
我们考虑在线学习设置中的顺序稀疏子集选择的问题。假设集合$ [n] $由$ n $不同的元素组成。在$ t^{\ text {th}} $ round上,单调奖励函数$ f_t:2^{[n]} \ to \ m athbb {r} _+,$,为每个子集分配非阴性奖励$ [n],向学习者透露$。学习者在奖励功能$ f_t $ for $ f_t $之前(k \ leq n)$选择(也许是随机的)子集$ s_t \ subseteq [n] $ of $ k $元素。由于选择的结果,学习者在$ t^{\ text {th}} $ round上获得了$ f_t(s_t)$的奖励。学习者的目标是设计一项在线子集选择策略,以最大程度地提高其在给定时间范围内产生的预期累积奖励。在这方面,我们提出了一种称为Score的在线学习策略(带有Core的子集选择),以解决大量奖励功能的问题。拟议的分数策略基于$ \ alpha $ core的新概念,这是对合作游戏理论文献中核心概念的概括。我们根据一个名为$ \ alpha $的遗憾的新绩效指标为分数政策建立学习保证。在这个新的指标中,与在线政策相比,离线基准的功能适当增强。我们给出了几个说明性示例,以表明可以使用分数策略有效地学习包括子模型在内的广泛奖励功能。我们还概述了如何在半伴奏反馈模型下使用得分策略,并以许多开放问题的总结结束了论文。
translated by 谷歌翻译
为了通过分布式在线学习中的本地光计算处理复杂的约束,最近的一项研究提出了一种称为分布式在线条件梯度(D-OCG)的无投影算法(D-OCG),并获得了$ O(T^{3/4})$遗憾的是凸出损失,其中$ t $是总回合的数量。但是,它需要$ t $通信回合,并且不能利用强大的损失凸度。在本文中,我们提出了一个改进的D-OCG的变体,即D-BOCG,可以达到相同的$ O(t^{3/4})$遗憾,只有$ o(\ sqrt {t})$凸损失的通信回合,以及$ o(t^{2/3}(\ log t)^{1/3})$的更好遗憾,少于$ o(t^{1/3}(\ log log) t)^{2/3})$通信回合,以实现强烈凸出的损失。关键思想是采用延迟的更新机制,以降低通信复杂性,并重新定义D-OCG中的替代损失功能以利用强凸度。此外,我们提供了下限,以证明D-BOCG所需的$ O(\ sqrt {t})$通信回合是最佳的(以$ t $为单位)实现$ O(T^{3/4} )$遗憾带有凸损失,以及$ o(t^{1/3}(\ log t)^{2/3})$ d-bocg所需的通信回合近距离)实现$ o(t^{2/3}(\ log t)^{1/3})$遗憾的是,强烈凸出的损失归属于多凝集因子。最后,为了处理更具挑战性的强盗设置,其中只有损失值可用,我们将经典的单点梯度估计器纳入D-BOCG,并获得类似的理论保证。
translated by 谷歌翻译
我们研究了一个顺序决策问题,其中学习者面临$ k $武装的随机匪徒任务的顺序。对手可能会设计任务,但是对手受到限制,以在$ m $ and的较小(但未知)子集中选择每个任务的最佳组。任务边界可能是已知的(强盗元学习设置)或未知(非平稳的强盗设置)。我们设计了一种基于Burnit subsodular最大化的减少的算法,并表明,在大量任务和少数最佳武器的制度中,它在两种情况下的遗憾都比$ \ tilde {o}的简单基线要小。 \ sqrt {knt})$可以通过使用为非平稳匪徒问题设计的标准算法获得。对于固定任务长度$ \ tau $的强盗元学习问题,我们证明该算法的遗憾被限制为$ \ tilde {o}(nm \ sqrt {m \ tau}+n^{2/3} m \ tau)$。在每个任务中最佳武器的可识别性的其他假设下,我们显示了一个带有改进的$ \ tilde {o}(n \ sqrt {m \ tau}+n^{1/2} {1/2} \ sqrt的强盗元学习算法{m k \ tau})$遗憾。
translated by 谷歌翻译
上下文匪徒问题是一个理论上合理的框架,在各个领域都有广泛的应用程序。虽然先前关于此问题的研究通常需要噪声和上下文之间的独立性,但我们的工作考虑了一个更明智的环境,其中噪声成为影响背景和奖励的潜在混杂因素。这样的混杂设置更现实,可以扩展到更广泛的应用程序。但是,未解决的混杂因素将导致奖励功能估计的偏见,从而导致极大的遗憾。为了应对混杂因素带来的挑战,我们应用了双工具变量回归,该回归可以正确识别真正的奖励功能。我们证明,在两种广泛使用的繁殖核希尔伯特空间中,该方法的收敛速率几乎是最佳的。因此,我们可以根据混杂的匪徒问题的理论保证来设计计算高效和遗憾的算法。数值结果说明了我们提出的算法在混杂的匪徒设置中的功效。
translated by 谷歌翻译
除了最大化总收入外,许多行业的决策者还希望保证跨不同资源的公平消费,并避免饱和某些资源。在这些实际需求的推动下,本文研究了基于价格的网络收入管理问题,需求学习和公平性关注不同资源的消费。我们介绍了正式的收入,即以公平的正规化为目标,作为我们的目标,将公平性纳入收入最大化目标。我们提出了一种原始的偶型在线政策,并使用受到信心限制(UCB)的需求学习方法最大化正规化收入。我们采用了几种创新技术,以使我们的算法成为连续价格集和广泛的公平规则化的统一和计算高效的框架。我们的算法实现了$ \ tilde o(n^{5/2} \ sqrt {t})$的最坏遗憾,其中$ n $表示产品数,$ t $表示时间段。一些NRM示例中的数值实验证明了我们算法在平衡收入和公平性方面的有效性。
translated by 谷歌翻译
资源限制的在线分配问题是收入管理和在线广告中的核心问题。在这些问题中,请求在有限的地平线期间顺序到达,对于每个请求,决策者需要选择消耗一定数量资源并生成奖励的动作。目标是最大限度地提高累计奖励,这是对资源总消费的限制。在本文中,我们考虑一种数据驱动的设置,其中使用决策者未知的输入模型生成每个请求的奖励和资源消耗。我们设计了一般的算法算法,可以在各种输入模型中实现良好的性能,而不知道它们面临的类型类型。特别是,我们的算法在独立和相同的分布式输入以及各种非静止随机输入模型下是渐近的最佳选择,并且当输入是对抗性时,它们达到渐近最佳的固定竞争比率。我们的算法在Lagrangian双色空间中运行:它们为使用在线镜像血管更新的每个资源维护双倍乘数。通过相应地选择参考功能,我们恢复双梯度下降和双乘法权重更新算法。与现有的在线分配问题的现有方法相比,所产生的算法简单,快速,不需要在收入函数,消费函数和动作空间中凸起。我们将应用程序讨论到网络收入管理,在线竞标,重复拍卖,预算限制,与高熵的在线比例匹配,以及具有有限库存的个性化分类优化。
translated by 谷歌翻译
Projection operations are a typical computation bottleneck in online learning. In this paper, we enable projection-free online learning within the framework of Online Convex Optimization with Memory (OCO-M) -- OCO-M captures how the history of decisions affects the current outcome by allowing the online learning loss functions to depend on both current and past decisions. Particularly, we introduce the first projection-free meta-base learning algorithm with memory that minimizes dynamic regret, i.e., that minimizes the suboptimality against any sequence of time-varying decisions. We are motivated by artificial intelligence applications where autonomous agents need to adapt to time-varying environments in real-time, accounting for how past decisions affect the present. Examples of such applications are: online control of dynamical systems; statistical arbitrage; and time series prediction. The algorithm builds on the Online Frank-Wolfe (OFW) and Hedge algorithms. We demonstrate how our algorithm can be applied to the online control of linear time-varying systems in the presence of unpredictable process noise. To this end, we develop the first controller with memory and bounded dynamic regret against any optimal time-varying linear feedback control policy. We validate our algorithm in simulated scenarios of online control of linear time-invariant systems.
translated by 谷歌翻译
差异化(DP)随机凸优化(SCO)在可信赖的机器学习算法设计中无处不在。本文研究了DP-SCO问题,该问题是从分布中采样并顺序到达的流媒体数据。我们还考虑了连续发布模型,其中与私人信息相关的参数已在每个新数据(通常称为在线算法)上更新和发布。尽管已经开发了许多算法,以实现不同$ \ ell_p $ norm几何的最佳多余风险,但是没有一个现有的算法可以适应流和持续发布设置。为了解决诸如在线凸优化和隐私保护的挑战,我们提出了一种在线弗兰克 - 沃尔夫算法的私人变体,并带有递归梯度,以减少差异,以更新和揭示每个数据上的参数。结合自适应差异隐私分析,我们的在线算法在线性时间中实现了最佳的超额风险,当$ 1 <p \ leq 2 $和最先进的超额风险达到了非私人较低的风险时,当$ 2 <p \ p \ $ 2 <p \ leq \ infty $。我们的算法也可以扩展到$ p = 1 $的情况,以实现几乎与维度无关的多余风险。虽然先前的递归梯度降低结果仅在独立和分布的样本设置中才具有理论保证,但我们在非平稳环境中建立了这样的保证。为了展示我们方法的优点,我们设计了第一个DP算法,用于具有对数遗憾的高维广义线性土匪。使用多种DP-SCO和DP-Bandit算法的比较实验表现出所提出的算法的功效和实用性。
translated by 谷歌翻译
汤普森抽样(TS)吸引了对强盗区域的兴趣。它在20世纪30年代介绍,但近年来尚未经过理论上证明。其在组合多武装强盗(CMAB)设置中的所有分析都需要精确的Oracle来提供任何输入的最佳解决方案。然而,这种Oracle通常是不可行的,因为许多组合优化问题是NP - 硬,并且只有近似oracles可用。一个例子(王和陈,2018)已经表明TS的失败来学习近似Oracle。但是,此Oracle罕见,仅用于特定问题实例。它仍然是一个开放的问题,无论TS的收敛分析是否可以扩展到CMAB中的精确oracle。在本文中,我们在贪婪的Oracle下研究了这个问题,这是一个常见的(近似)Oracle,具有理论上的保证来解决许多(离线)组合优化问题。我们提供了一个问题依赖性遗憾的遗憾下限为$ \ omega(\ log t / delta ^ 2)$,以量化Ts的硬度来解决贪婪的甲骨文的CMAB问题,其中$ T $是时间范围和$ Delta $是一些奖励差距。我们还提供几乎匹配的遗憾上限。这些是TS解决CMAB与常见近似甲骨文的第一个理论结果,并打破TS无法使用近似神谕的误解。
translated by 谷歌翻译
我们考虑在具有强盗反馈的未知游戏中的在线无遗憾的学习,其中每个代理只在每次都观察到其奖励 - 所有参与者当前的联合行动 - 而不是其渐变。我们专注于平稳且强烈单调的游戏类,并在其中研究最佳的无遗憾。利用自我协调的障碍功能,我们首先构建在线强盗凸优化算法,并表明它实现了平滑且强烈 - 凹陷的支付下$ \ tilde {\ theta}(\ sqrt {t})$的单代理最佳遗憾职能。然后,如果每个代理在强烈单调的游戏中应用这种无悔的学习算法,则以$ \ tilde {\ theta}的速率,联合动作会收敛于\ texit {last erate}到唯一的纳什均衡(1 / \ sqrt {t})$。在我们的工作之前,同一类游戏中的最熟悉的融合率是$ O(1 / T ^ {1/3})$(通过不同的算法实现),从而留下了最佳无悔的问题学习算法(因为已知的下限为$ \ omega(1 / \ sqrt {t})$)。我们的结果因此通过识别第一双重最佳强盗学习算法来解决这个公开问题并促进强盗游戏 - 理论学习的广泛景观,因为它达到了(达到了日志因子)单王子学习和最佳的最佳遗憾多代理学习中的最后迭代收敛速度。我们还展示了几项模拟研究的结果 - Cournot竞争,凯利拍卖和分布式正则化物流回归 - 以证明我们算法的功效。
translated by 谷歌翻译
本文以非线性功能近似研究基于模型的匪徒和增强学​​习(RL)。我们建议研究与近似局部最大值的收敛性,因为我们表明,即使对于具有确定性奖励的一层神经网络匪徒,全球收敛在统计上也很棘手。对于非线性匪徒和RL,本文介绍了一种基于模型的算法,即具有在线模型学习者(小提琴)的虚拟攀登,该算法可证明其收敛到局部最大值,其样品复杂性仅取决于模型类的顺序Rademacher复杂性。我们的结果意味着在几种具体设置(例如有限或稀疏模型类别的线性匪徒)和两层神经净匪内的新型全球或本地遗憾界限。一个关键的算法洞察力是,即使对于两层神经净模型类别,乐观也可能导致过度探索。另一方面,为了收敛到本地最大值,如果模型还可以合理地预测真实返回的梯度和Hessian的大小,则足以最大化虚拟返回。
translated by 谷歌翻译
In the framework of online convex optimization, most iterative algorithms require the computation of projections onto convex sets, which can be computationally expensive. To tackle this problem HK12 proposed the study of projection-free methods that replace projections with less expensive computations. The most common approach is based on the Frank-Wolfe method, that uses linear optimization computation in lieu of projections. Recent work by GK22 gave sublinear adaptive regret guarantees with projection free algorithms based on the Frank Wolfe approach. In this work we give projection-free algorithms that are based on a different technique, inspired by Mhammedi22, that replaces projections by set-membership computations. We propose a simple lazy gradient-based algorithm with a Minkowski regularization that attains near-optimal adaptive regret bounds. For general convex loss functions we improve previous adaptive regret bounds from $O(T^{3/4})$ to $O(\sqrt{T})$, and further to tight interval dependent bound $\tilde{O}(\sqrt{I})$ where $I$ denotes the interval length. For strongly convex functions we obtain the first poly-logarithmic adaptive regret bounds using a projection-free algorithm.
translated by 谷歌翻译
在线优化是一个完善的优化范式,旨在鉴于对以前的决策任务的正确答案,旨在做出一系列正确的决策。二重编程涉及一个分层优化问题,其中所谓的外部问题的可行区域受内部问题的解决方案集映射的限制。本文将这两个想法汇总在一起,并研究了在线双层优化设置,其中一系列随时间变化的二聚体问题又一个接一个地揭示了一个。我们将已知的单层在线算法的已知遗憾界限扩展到双重设置。具体而言,我们引入了新的杂种遗憾概念,开发了一种在线交替的时间平均梯度方法,该方法能够利用光滑度,并根据内部和外部极型序列的长度提供遗憾的界限。
translated by 谷歌翻译
我们研究了在线马尔可夫决策过程(MDP),具有对抗性变化的损失功能和已知过渡。我们选择动态遗憾作为绩效度量,定义为学习者和任何可行的变化策略序列之间的绩效差异。这项措施严格比标准的静态遗憾要强得多,该标准遗憾的是,基准通过固定的政策将学习者的绩效表现为学习者的表现。我们考虑了三种在线MDP的基础模型,包括无情节循环随机路径(SSP),情节SSP和Infinite-Horizo​​n MDP。对于这三个模型,我们提出了新颖的在线集合算法并分别建立了动态​​遗憾保证,在这种情况下,情节性(无环)SSP的结果在时间范围和某些非平稳性度量方面是最佳的最低限度。此外,当学习者遇到的在线环境是可以预测的时,我们设计了改进的算法并为情节(无环)SSP实现更好的动态遗憾界限;此外,我们证明了无限 - 摩恩MDP的不可能结果。
translated by 谷歌翻译