我们研究了在线马尔可夫决策过程(MDP),具有对抗性变化的损失功能和已知过渡。我们选择动态遗憾作为绩效度量,定义为学习者和任何可行的变化策略序列之间的绩效差异。这项措施严格比标准的静态遗憾要强得多,该标准遗憾的是,基准通过固定的政策将学习者的绩效表现为学习者的表现。我们考虑了三种在线MDP的基础模型,包括无情节循环随机路径(SSP),情节SSP和Infinite-Horizo​​n MDP。对于这三个模型,我们提出了新颖的在线集合算法并分别建立了动态​​遗憾保证,在这种情况下,情节性(无环)SSP的结果在时间范围和某些非平稳性度量方面是最佳的最低限度。此外,当学习者遇到的在线环境是可以预测的时,我们设计了改进的算法并为情节(无环)SSP实现更好的动态遗憾界限;此外,我们证明了无限 - 摩恩MDP的不可能结果。
translated by 谷歌翻译
我们在非静止环境中调查在线凸优化,然后选择\ emph {动态后悔}作为性能测量,定义为在线算法产生的累积损失与任何可行比较器序列之间的差异。让$ t $是$ p_t $ be的路径长度,基本上反映了环境的非平稳性,最先进的动态遗憾是$ \ mathcal {o}(\ sqrt {t( 1 + p_t)})$。虽然这一界限被证明是凸函数最佳的最低限度,但在本文中,我们证明可以进一步提高一些简单的问题实例的保证,特别是当在线功能平滑时。具体而言,我们提出了新的在线算法,可以利用平滑度并替换动态遗憾的$ t $替换依据\ {问题依赖性}数量:损耗函数梯度的变化,比较器序列的累积损失,以及比较器序列的累积损失最低术语的最低限度。这些数量是大多数$ \ mathcal {o}(t)$,良性环境中可能更小。因此,我们的结果适应了问题的内在难度,因为边界比现有结果更严格,以便在最坏的情况下保证相同的速率。值得注意的是,我们的算法只需要\ emph {一个}渐变,这与开发的方法共享相同的渐变查询复杂性,以优化静态遗憾。作为进一步的应用,我们将来自全信息设置的结果扩展到具有两点反馈的强盗凸优化,从而达到此类强盗任务的第一个相关的动态遗憾。
translated by 谷歌翻译
我们考虑对对抗性马尔可夫决策过程(AMDP)的遗憾最小化,其中损失功能随着时间的流逝而变化和对抗性,学习者仅观察访问的国家行动对的损失(即强盗反馈)。尽管使用在线培训(OMD)方法对此问题进行了大量研究,但对以下扰动领导者(FTPL)方法的了解很少,这些方法通常在计算上更有效,并且更易于实施仅仅需要解决离线计划问题。以此为激励,我们仔细研究了从标准的情节有限摩托设置开始学习AMDP的FTPL。我们在分析中发现了一些独特而有趣的困难,并提出解决方法,最终表明FTPL在这种情况下也能够达到近乎最佳的遗憾界限。更重要的是,我们然后找到两个重要的应用:首先,FTPL的分析很容易被延迟的匪徒反馈和订单最佳的遗憾,而OMD方法则表现出额外的困难(Jin等,2022)。其次,使用FTPL,我们还开发了第一个用于学习在无限 - 摩恩环境中通过匪徒反馈和随机过渡的无限 - 马设置中通信AMDP的NO-Regret算法。我们的算法是有效的,假设访问离线规划Oracle,即使为了易于全信息设置,唯一的现有算法(Chandrasekaran和Tewari,2021年)在计算上效率低下。
translated by 谷歌翻译
我们研究了具有线性函数近似增强学习中的随机最短路径(SSP)问题,其中过渡内核表示为未知模型的线性混合物。我们将此类别的SSP问题称为线性混合物SSP。我们提出了一种具有Hoeffding-type置信度的新型算法,用于学习线性混合物SSP,可以获得$ \ tilde {\ Mathcal {o}}}}(d B _ {\ star}^{1.5} \ sqrt {k/c_ {k/c_ {k/c_ {k/c_ { \ min}})$遗憾。这里$ k $是情节的数量,$ d $是混合模型中功能映射的维度,$ b _ {\ star} $限制了最佳策略的预期累积成本,$ c _ {\ min}>> 0 $是成本函数的下限。当$ c _ {\ min} = 0 $和$ \ tilde {\ mathcal {o}}}(k^{2/3})$遗憾时,我们的算法也适用于情况。据我们所知,这是第一个具有sublrinear遗憾保证线性混合物SSP的算法。此外,我们设计了精致的伯恩斯坦型信心集并提出了改进的算法,该算法可实现$ \ tilde {\ Mathcal {o}}}(d b _ {\ star} \ sqrt {k/c/c/c {k/c _ {\ min}}) $遗憾。为了补充遗憾的上限,我们还证明了$ \ omega(db _ {\ star} \ sqrt {k})$的下限。因此,我们的改进算法将下限匹配到$ 1/\ sqrt {c _ {\ min}} $ factor和poly-logarithmic因素,从而实现了近乎最佳的遗憾保证。
translated by 谷歌翻译
我们考虑非平稳马尔可夫决策过程中的无模型增强学习(RL)。只要其累积变化不超过某些变化预算,奖励功能和国家过渡功能都可以随时间随时间变化。我们提出了重新启动的Q学习,以上置信度范围(RestartQ-UCB),这是第一个用于非平稳RL的无模型算法,并表明它在动态遗憾方面优于现有的解决方案。具体而言,带有freedman型奖励项的restartq-ucb实现了$ \ widetilde {o}(s^{\ frac {1} {3}} {\ frac {\ frac {1} {1} {3}} {3}} {3}} {3}} {3}} {3}} {3}} {3}} {\ delta ^{\ frac {1} {3}} h t^{\ frac {2} {3}}} $,其中$ s $和$ a $分别是$ \ delta> 0 $的状态和动作的数字是变化预算,$ h $是每集的时间步数,而$ t $是时间步长的总数。我们进一步提出了一种名为Double-Restart Q-UCB的无参数算法,该算法不需要事先了解变化预算。我们证明我们的算法是\ emph {几乎是最佳},通过建立$ \ omega的信息理论下限(s^{\ frac {1} {1} {3}}} a^{\ frac {1} {1} {3}}}}}} \ delta^{\ frac {1} {3}} h^{\ frac {2} {3}}}} t^{\ frac {2} {3}}} $,是非稳态RL中的第一个下下限。数值实验可以根据累积奖励和计算效率来验证RISTARTQ-UCB的优势。我们在相关产品的多代理RL和库存控制的示例中证明了我们的结果的力量。
translated by 谷歌翻译
Projection operations are a typical computation bottleneck in online learning. In this paper, we enable projection-free online learning within the framework of Online Convex Optimization with Memory (OCO-M) -- OCO-M captures how the history of decisions affects the current outcome by allowing the online learning loss functions to depend on both current and past decisions. Particularly, we introduce the first projection-free meta-base learning algorithm with memory that minimizes dynamic regret, i.e., that minimizes the suboptimality against any sequence of time-varying decisions. We are motivated by artificial intelligence applications where autonomous agents need to adapt to time-varying environments in real-time, accounting for how past decisions affect the present. Examples of such applications are: online control of dynamical systems; statistical arbitrage; and time series prediction. The algorithm builds on the Online Frank-Wolfe (OFW) and Hedge algorithms. We demonstrate how our algorithm can be applied to the online control of linear time-varying systems in the presence of unpredictable process noise. To this end, we develop the first controller with memory and bounded dynamic regret against any optimal time-varying linear feedback control policy. We validate our algorithm in simulated scenarios of online control of linear time-invariant systems.
translated by 谷歌翻译
当培训数据共享与即将到来的测试样本相同的分布时,标准监督学习范式有效地工作。但是,在现实世界中,通常会违反此假设,尤其是在以在线方式出现测试数据时。在本文中,我们制定和调查了在线标签转移(OLAS)的问题:学习者从标记的离线数据训练初始模型,然后将其部署到未标记的在线环境中,而基础标签分布会随着时间的推移而变化,但标签 - 条件密度没有。非平稳性和缺乏监督使问题具有挑战性。为了解决难度,我们构建了一个新的无偏风险估计器,该风险估计器利用了未标记的数据,该数据表现出许多良性特性,尽管具有潜在的非跨性别性。在此基础上,我们提出了新颖的在线合奏算法来应对环境的非平稳性。我们的方法享有最佳的动态遗憾,表明该性能与千里眼的千里眼竞争,后者是事后看来的在线环境,然后选择每轮的最佳决定。获得的动态遗憾结合量表与标签分布转移的强度和模式,因此在OLAS问题中表现出适应性。进行广泛的实验以验证有效性和支持我们的理论发现。
translated by 谷歌翻译
我们研究了随机的最短路径(SSP)问题,其中代理商必须以最短的预计成本达到目标状态。在问题的学习制定中,代理商没有关于模型的成本和动态的知识。她反复与k $剧集的型号交互,并且必须尽量减少她的遗憾。在这项工作中,我们表明这个设置的Minimax遗憾是$ \ widetilde o(\ sqrt {(b_ \ star ^ 2 + b_ \ star)| s | a | a | k})$ why $ b_ \ star $ a符合来自任何州的最佳政策的预期成本,$ S $是状态空间,$ a $是行动空间。此相匹配的$ \欧米茄(\ SQRT {B_ \星^ 2 | S | |甲| K})$下界Rosenberg等人的。 [2020]对于$ b_ \ star \ ge 1 $,并改善了他们的遗憾,以\ sqrt {| s |} $ \ you的遗憾。对于$ b_ \ star <1 $我们证明$ \ omega的匹配下限(\ sqrt {b_ \ star | s | a | a | k})$。我们的算法基于SSP的新颖减少到有限地平线MDP。为此,我们为有限地域设置提供了一种算法,其前期遗憾遗憾地取决于最佳政策的预期成本,并且仅对地平线上的对数。
translated by 谷歌翻译
强化学习通常假设代理人立即观察其动作的反馈,但在许多实际应用中(如推荐系统),延迟观察到反馈。本文在线学习在线学习,具有未知过渡,过渡性的成本和不受限制的延迟反馈,在线学习。也就是说,集中的成本和轨迹只在第k + d ^ k $的集中延迟到学习者,其中延迟$ d ^ k $既不相同也不有界限,并由其中选择忘记的对手。我们提出了基于策略优化的新型算法,该算法在全信息反馈下实现了$ \ sqrt {k + d} $的近乎最佳的高概率遗憾,其中$ k $是剧集的数量和$ d = \ sum_ {k D ^ K $是总延迟。在强盗反馈下,我们证明了类似$ \ SQRT {K + D} $遗憾假设成本是随机的,而在一般情况下为$(k + d)^ {2/3} $遗憾。我们是第一个在具有延迟反馈的MDP的重要设置中考虑后悔最小化。
translated by 谷歌翻译
最近有很多不可能的结果表明,在与对抗对手的马尔可夫游戏中最小化的遗憾在统计学上和计算上是棘手的。然而,这些结果都没有排除在所有各方采用相同学习程序的假设下,遗憾最小化的可能性。在这项工作中,我们介绍了第一种(据我们所知)在通用马尔可夫游戏中学习的算法,该算法在所有代理商执行时提供了sublinear后悔保证。我们获得的边界是为了置换遗憾,因此,在此过程中,意味着融合了相关的平衡。我们的算法是分散的,计算上有效的,并且不需要代理之间的任何通信。我们的主要观察结果是,在马尔可夫游戏中通过策略优化的在线学习基本上减少了一种加权遗憾的最小化形式,而未知权重由代理商的策略顺序的路径长度确定。因此,控制路径长度会导致加权的遗憾目标,以提供足够的适应性算法提供统一的后悔保证。
translated by 谷歌翻译
我们研究了在随机最短路径(SSP)设置中的学习问题,其中代理试图最小化在达到目标状态之前累积的预期成本。我们设计了一种新型基于模型的算法EB-SSP,仔细地偏离了经验转变,并通过探索奖励来赋予经验成本,以诱导乐观的SSP问题,其相关价值迭代方案被保证收敛。我们证明了EB-SSP实现了Minimax后悔率$ \ tilde {o}(b _ {\ star} \ sqrt {sak})$,其中$ k $是剧集的数量,$ s $是状态的数量, $ a $是行动的数量,而B _ {\ star} $绑定了从任何状态的最佳策略的预期累积成本,从而缩小了下限的差距。有趣的是,EB-SSP在没有参数的同时获得此结果,即,它不需要任何先前的$ B _ {\ star} $的知识,也不需要$ t _ {\ star} $,它绑定了预期的时间 ​​- 任何州的最佳政策的目标。此外,我们说明了各种情况(例如,当$ t _ {\ star} $的订单准确估计可用时,遗憾地仅包含对$ t _ {\ star} $的对数依赖性,因此产生超出有限范围MDP设置的第一个(几乎)的免地相会遗憾。
translated by 谷歌翻译
本文调查了非静止线性匪徒的问题,其中未知的回归参数随着时间的推移而发展。现有的研究开发了各种算法并显示他们享受$ \ widetilde {\ mathcal {p_t ^ {1/3})$动态遗憾,其中$ t $是时间范围和$ p_t $是测量演化未知参数的波动的路径长度。在本文中,我们发现一个严肃的技术缺陷使其结果未接地,然后呈现一个FIX,它给出$ \ WidTilde {\ Mathcal {o}}(t ^ {3/4} p_t ^ {1/4} )$动态遗憾而不修改原始算法。此外,我们证明了代替使用复杂的机制,例如滑动窗口或加权罚款,简单的重启策略足以实现相同的遗憾保证。具体而言,我们设计了UCB型算法来平衡利用和探索,并定期重新启动它以处理未知参数的漂移。我们的方法享有$ \ widetilde {\ mathcal {o}}(t ^ {3/4} p_t ^ {1/4})$动态遗憾。请注意,为了实现这一界限,该算法需要Oracle知识路径长度$ P_T $。将强盗带式机制组合通过将我们的算法视为基础学习者,我们可以通过无参数方式实现相同的遗憾。实证研究还验证了我们方法的有效性。
translated by 谷歌翻译
我们介绍了一种普遍的策略,可实现有效的多目标勘探。它依赖于adagoal,一种基于简单约束优化问题的新的目标选择方案,其自适应地针对目标状态,这既不是太困难也不是根据代理目前的知识达到的。我们展示了Adagoal如何用于解决学习$ \ epsilon $ -optimal的目标条件的政策,以便在$ L $ S_0 $ S_0 $奖励中获得的每一个目标状态,以便在$ S_0 $中获取。免费马尔可夫决策过程。在标准的表格外壳中,我们的算法需要$ \ tilde {o}(l ^ 3 s a \ epsilon ^ { - 2})$探索步骤,这几乎很少最佳。我们还容易在线性混合Markov决策过程中实例化Adagoal,其产生具有线性函数近似的第一目标导向的PAC保证。除了强大的理论保证之外,迈克纳队以现有方法的高级别算法结构为锚定,为目标条件的深度加固学习。
translated by 谷歌翻译
我们在随机和对抗性马尔可夫决策过程(MDP)中研究合作在线学习。也就是说,在每一集中,$ m $代理商同时与MDP互动,并共享信息以最大程度地减少他们的遗憾。我们考虑具有两种随机性的环境:\ emph {Fresh} - 在每个代理的轨迹均已采样i.i.d和\ emph {non-fresh} - 其中所有代理人共享实现(但每个代理的轨迹也受到影响)通过其自己的行动)。更确切地说,通过非志趣相投的随机性,每个成本和过渡的实现都在每个情节开始时都固定了,并且在同一时间同时采取相同行动的代理人观察到相同的成本和下一个状态。我们彻底分析了所有相关设置,强调了模型之间的挑战和差异,并证明了几乎匹配的遗憾下层和上限。据我们所知,我们是第一个考虑具有非伪造随机性或对抗性MDP的合作强化学习(RL)。
translated by 谷歌翻译
强化学习理论集中在两个基本问题上:实现低遗憾,并确定$ \ epsilon $ - 最佳政策。虽然简单的减少允许人们应用低温算法来获得$ \ epsilon $ - 最佳政策并达到最坏的最佳速率,但尚不清楚低regret算法是否可以获得实例 - 最佳率的策略识别率。我们表明这是不可能的 - 在遗憾和确定$ \ epsilon $ - 最佳政策之间以最佳的利率确定了基本的权衡。由于我们的负面发现,我们提出了针对PAC表格增强学习实例依赖性样本复杂性的新量度,该方法明确说明了基础MDP中可达到的国家访问分布。然后,我们提出和分析一种基于计划的新型算法,该算法达到了这种样本的复杂性 - 产生的复杂性会随着次要差距和状态的“可达到性”而缩放。我们显示我们的算法几乎是最小的最佳选择,并且在一些示例中,我们实例依赖性样品复杂性比最差案例界限可显着改善。
translated by 谷歌翻译
我们为随机最短路径(SSP)问题引入了两个新的无悔算法,其线性MDP显着改善了唯一的现有结果(Vial等,2021)。我们的第一算法是计算上的效率,实现了遗憾的绑定$ \ wideetilde {o} \ left(\ sqrt {d ^ 3b _ {\ star} ^ 2t _ {\ star} k}右)$,其中$ d $是维度特征空间,$ B _ {\ star} $和$ t _ {\ star} $分别是预期成本的上限,分别击中最佳政策的时间,$ k $是剧集的数量。具有略微修改的相同算法也实现了对数为OR o \ lex的对数后悔(\ frac {d ^ 3b _ {\ star} ^ 4} {c _ {\ min} ^ 2 \ text {gap} _ {\ min}} \ ln ^ 5 \ frac {db _ {\ star}} {c _ {\ min}} \右)$,其中$ \ text {gap} _ {\ min} $是最小的子项目差距和$ c_ { \ min} $是所有国家动作对的最低成本。我们的结果是通过开发更简单和改进的分析(Cohen等人,2021)的有限范围的分析而具有较小的近似误差,这可能具有独立兴趣。另一方面,在全局优化问题中使用方差感知的信心集,我们的第二算法是计算效率低下的,但实现了第一个“免费”后悔绑定$ \ widetilde {o}(d ^ {3.5} b _ {\ star } \ sqrt {k})$与$ t _ {\ star} $或$ 1 / c _ {\ min} $,几乎匹配$ \ omega(db _ {\ star} \ sqrt {k})$较低(Min等,2021)的绑定。
translated by 谷歌翻译
We study time-inhomogeneous episodic reinforcement learning (RL) under general function approximation and sparse rewards. We design a new algorithm, Variance-weighted Optimistic $Q$-Learning (VO$Q$L), based on $Q$-learning and bound its regret assuming completeness and bounded Eluder dimension for the regression function class. As a special case, VO$Q$L achieves $\tilde{O}(d\sqrt{HT}+d^6H^{5})$ regret over $T$ episodes for a horizon $H$ MDP under ($d$-dimensional) linear function approximation, which is asymptotically optimal. Our algorithm incorporates weighted regression-based upper and lower bounds on the optimal value function to obtain this improved regret. The algorithm is computationally efficient given a regression oracle over the function class, making this the first computationally tractable and statistically optimal approach for linear MDPs.
translated by 谷歌翻译
我们开发了一个修改的在线镜下降框架,该框架适用于在无界域中构建自适应和无参数的算法。我们利用这项技术来开发第一个不受限制的在线线性优化算法,从而达到了最佳的动态遗憾,我们进一步证明,基于以下规范化领导者的自然策略无法取得相似的结果。我们还将镜像下降框架应用于构建新的无参数隐式更新,以及简化和改进的无限规模算法。
translated by 谷歌翻译
我们在适应性约束下研究了强化学习(RL),线性函数近似。我们考虑两个流行的有限适应性模型:批量学习模型和稀有策略交换机模型,并提出了两个有效的在线线性马尔可夫决策过程的在线RL算法,其中转换概率和奖励函数可以表示为一些线性函数已知的特征映射。具体而言,对于批量学习模型,我们提出的LSVI-UCB-批处理算法实现了$ \ tilde o(\ sqrt {d ^ 3h ^ 3t} + dht / b)$后悔,$ d $是尺寸特征映射,$ H $是剧集长度,$ t $是交互数量,$ b $是批次数。我们的结果表明,只使用$ \ sqrt {t / dh} $批量来获得$ \ tilde o(\ sqrt {d ^ 3h ^ 3t})$后悔。对于稀有策略开关模型,我们提出的LSVI-UCB-RARESWICH算法享有$ \ TINDE O(\ SQRT {D ^ 3h ^ 3t [1 + T /(DH)] ^ {dh / b})$遗憾,这意味着$ dh \ log t $策略交换机足以获得$ \ tilde o(\ sqrt {d ^ 3h ^ 3t})$后悔。我们的算法达到与LSVI-UCB算法相同的遗憾(Jin等,2019),但具有大量较小的适应性。我们还为批量学习模式建立了较低的界限,这表明对我们遗憾的依赖于您的遗憾界限是紧张的。
translated by 谷歌翻译
Two central paradigms have emerged in the reinforcement learning (RL) community: online RL and offline RL. In the online RL setting, the agent has no prior knowledge of the environment, and must interact with it in order to find an $\epsilon$-optimal policy. In the offline RL setting, the learner instead has access to a fixed dataset to learn from, but is unable to otherwise interact with the environment, and must obtain the best policy it can from this offline data. Practical scenarios often motivate an intermediate setting: if we have some set of offline data and, in addition, may also interact with the environment, how can we best use the offline data to minimize the number of online interactions necessary to learn an $\epsilon$-optimal policy? In this work, we consider this setting, which we call the \textsf{FineTuneRL} setting, for MDPs with linear structure. We characterize the necessary number of online samples needed in this setting given access to some offline dataset, and develop an algorithm, \textsc{FTPedel}, which is provably optimal. We show through an explicit example that combining offline data with online interactions can lead to a provable improvement over either purely offline or purely online RL. Finally, our results illustrate the distinction between \emph{verifiable} learning, the typical setting considered in online RL, and \emph{unverifiable} learning, the setting often considered in offline RL, and show that there is a formal separation between these regimes.
translated by 谷歌翻译