Projection operations are a typical computation bottleneck in online learning. In this paper, we enable projection-free online learning within the framework of Online Convex Optimization with Memory (OCO-M) -- OCO-M captures how the history of decisions affects the current outcome by allowing the online learning loss functions to depend on both current and past decisions. Particularly, we introduce the first projection-free meta-base learning algorithm with memory that minimizes dynamic regret, i.e., that minimizes the suboptimality against any sequence of time-varying decisions. We are motivated by artificial intelligence applications where autonomous agents need to adapt to time-varying environments in real-time, accounting for how past decisions affect the present. Examples of such applications are: online control of dynamical systems; statistical arbitrage; and time series prediction. The algorithm builds on the Online Frank-Wolfe (OFW) and Hedge algorithms. We demonstrate how our algorithm can be applied to the online control of linear time-varying systems in the presence of unpredictable process noise. To this end, we develop the first controller with memory and bounded dynamic regret against any optimal time-varying linear feedback control policy. We validate our algorithm in simulated scenarios of online control of linear time-invariant systems.
translated by 谷歌翻译
我们在非静止环境中调查在线凸优化,然后选择\ emph {动态后悔}作为性能测量,定义为在线算法产生的累积损失与任何可行比较器序列之间的差异。让$ t $是$ p_t $ be的路径长度,基本上反映了环境的非平稳性,最先进的动态遗憾是$ \ mathcal {o}(\ sqrt {t( 1 + p_t)})$。虽然这一界限被证明是凸函数最佳的最低限度,但在本文中,我们证明可以进一步提高一些简单的问题实例的保证,特别是当在线功能平滑时。具体而言,我们提出了新的在线算法,可以利用平滑度并替换动态遗憾的$ t $替换依据\ {问题依赖性}数量:损耗函数梯度的变化,比较器序列的累积损失,以及比较器序列的累积损失最低术语的最低限度。这些数量是大多数$ \ mathcal {o}(t)$,良性环境中可能更小。因此,我们的结果适应了问题的内在难度,因为边界比现有结果更严格,以便在最坏的情况下保证相同的速率。值得注意的是,我们的算法只需要\ emph {一个}渐变,这与开发的方法共享相同的渐变查询复杂性,以优化静态遗憾。作为进一步的应用,我们将来自全信息设置的结果扩展到具有两点反馈的强盗凸优化,从而达到此类强盗任务的第一个相关的动态遗憾。
translated by 谷歌翻译
我们研究了在线马尔可夫决策过程(MDP),具有对抗性变化的损失功能和已知过渡。我们选择动态遗憾作为绩效度量,定义为学习者和任何可行的变化策略序列之间的绩效差异。这项措施严格比标准的静态遗憾要强得多,该标准遗憾的是,基准通过固定的政策将学习者的绩效表现为学习者的表现。我们考虑了三种在线MDP的基础模型,包括无情节循环随机路径(SSP),情节SSP和Infinite-Horizo​​n MDP。对于这三个模型,我们提出了新颖的在线集合算法并分别建立了动态​​遗憾保证,在这种情况下,情节性(无环)SSP的结果在时间范围和某些非平稳性度量方面是最佳的最低限度。此外,当学习者遇到的在线环境是可以预测的时,我们设计了改进的算法并为情节(无环)SSP实现更好的动态遗憾界限;此外,我们证明了无限 - 摩恩MDP的不可能结果。
translated by 谷歌翻译
我们考虑了具有一系列二次损耗的序列,即LQR控制的问题。我们提供了一种有效的在线算法,该算法实现了$ \ tilde {o}的最佳动态(策略)遗憾(\ text {max} \ {n^{n^{1/3} \ mathcal {tv}(m_ {1:n})^{2/3},1 \})$,其中$ \ Mathcal {tv}(m_ {1:n})$是任何Oracle序列序列的总变化,由$ M_1,...,...,...,...,...,...,...,...,...,...,...,...,...,...m_n $ - 事后选择以迎合未知的非机构性。该费率提高了$ \ tilde {o}(\ sqrt {n(\ Mathcal {tv}}(m_ {1:n})+1)} $的最佳已知费率(\ sqrt {N(\ Mathcal {tv}})$ - 理论上最佳的LQR。主要技术组件包括将LQR减少到在线线性回归,并延迟由于Foster和Simchowitz(2020)而延迟反馈,以及具有最佳$ \ tilde {o}(n^{1/3})的新的适当学习算法(N^{1/3})$动态的遗憾是``小匹配''二次损失的家庭,这可能引起独立的兴趣。
translated by 谷歌翻译
当培训数据共享与即将到来的测试样本相同的分布时,标准监督学习范式有效地工作。但是,在现实世界中,通常会违反此假设,尤其是在以在线方式出现测试数据时。在本文中,我们制定和调查了在线标签转移(OLAS)的问题:学习者从标记的离线数据训练初始模型,然后将其部署到未标记的在线环境中,而基础标签分布会随着时间的推移而变化,但标签 - 条件密度没有。非平稳性和缺乏监督使问题具有挑战性。为了解决难度,我们构建了一个新的无偏风险估计器,该风险估计器利用了未标记的数据,该数据表现出许多良性特性,尽管具有潜在的非跨性别性。在此基础上,我们提出了新颖的在线合奏算法来应对环境的非平稳性。我们的方法享有最佳的动态遗憾,表明该性能与千里眼的千里眼竞争,后者是事后看来的在线环境,然后选择每轮的最佳决定。获得的动态遗憾结合量表与标签分布转移的强度和模式,因此在OLAS问题中表现出适应性。进行广泛的实验以验证有效性和支持我们的理论发现。
translated by 谷歌翻译
遗憾已被广泛用作评估分布式多代理系统在线优化算法的性能的首选指标。但是,与代理相关的数据/模型变化可以显着影响决策,并需要在代理之间达成共识。此外,大多数现有的作品都集中在开发(强烈或非严格地)凸出的方法上,对于一般非凸损失的分布式在线优化中的遗憾界限,几乎没有得到很少的结果。为了解决这两个问题,我们提出了一种新型的综合遗憾,并使用新的基于网络的基于遗憾的度量标准来评估分布式在线优化算法。我们具体地定义了复合遗憾的静态和动态形式。通过利用我们的综合遗憾的动态形式,我们开发了一种基于共识的在线归一化梯度(CONGD)的伪convex损失方法,事实证明,它显示了与最佳器路径变化的规律性术语有关的透明性行为。对于一般的非凸损失,我们首先阐明了基于最近进步的分布式在线非凸学习的遗憾,因此没有确定性算法可以实现sublinear的遗憾。然后,我们根据离线优化的Oracle开发了分布式的在线非凸优化(Dinoco),而无需进入梯度。迪诺科(Dinoco)被证明是统一的遗憾。据我们所知,这是对一般分布在线非convex学习的第一个遗憾。
translated by 谷歌翻译
自适应梯度算法(例如Adagrad及其变体)在培训深神经网络方面已广受欢迎。尽管许多适合自适应方法的工作都集中在静态的遗憾上,作为实现良好遗憾保证的性能指标,但对这些方法的动态遗憾分析尚不清楚。与静态的遗憾相反,动态遗憾被认为是绩效测量的更强大的概念,因为它明确阐明了环境的非平稳性。在本文中,我们通过动态遗憾的概念在一个强大的凸面设置中浏览了Adagrad(称为M-Adagrad)的一种变体,该遗憾衡量了在线学习者的性能,而不是参考(最佳)解决方案,这可能会改变时间。我们证明了根据最小化序列的路径长度的束缚,该序列基本上反映了环境的非平稳性。此外,我们通过利用每个回合中学习者的多个访问权限来增强动态遗憾。经验结果表明,M-Adagrad在实践中也很好。
translated by 谷歌翻译
我们解决了经典专家问题的长期“不可能的调整”问题,并表明,实际上可能实现后悔$ o \ lex(\ sqrt {(\ ln d)\ sum_t \ ell_ {t,i} ^ 2} \ \右)同时为所有专家$ i $ t-$-t-$ -round $ d $ -expert问题在哪里$ \ ell_ {t,i} $是专家$ i $的损失$ t $ 。我们的算法基于镜像血迹框架,具有校正项和加权熵规范器。虽然自然,但之前尚未研究该算法,并且需要仔细分析。对于任何预测向量$ M_T,我们还概括了refton to $ o reft(\ sqrt {(\ ln d)\ sum_t(\ ell_ {t,i})^ 2} \右)$ $ Cylayer通过选择不同的$ M_T $来收到学习者,并恢复或改善许多现有结果。此外,我们使用相同的框架来创建一个组合一组基础算法的主算法,并学习最好的一个开销。我们的主人的新保证使我们能够为专家问题提供许多新的结果,并且更广泛的在线线性优化。
translated by 谷歌翻译
在本文中,我们考虑了找到一种元学习在线控制算法的问题,该算法可以在面对$ n $(类似)控制任务的序列时可以在整个任务中学习。每个任务都涉及控制$ t $时间步骤的有限视野的线性动力系统。在采取控制动作之前,每个时间步骤的成本函数和系统噪声是对抗性的,并且控制器未知。元学习是一种广泛的方法,其目标是为任何新的未见任务开出在线政策,从其他任务中利用信息以及任务之间的相似性。我们为控制设置提出了一种元学习的在线控制算法,并通过\ textit {meta-regret}表征其性能,这是整个任务的平均累积后悔。我们表明,当任务数量足够大时,我们提出的方法实现了与独立学习的在线控制算法相比,$ d/d/d^{*} $较小的元regret,该算法不会在整个网上控制算法上进行学习任务,其中$ d $是一个问题常数,$ d^{*} $是标量,随着任务之间的相似性的增加而降低。因此,当任务的顺序相似时,提议的元学习在线控制的遗憾显着低于没有元学习的幼稚方法。我们还提出了实验结果,以证明我们的元学习算法获得的出色性能。
translated by 谷歌翻译
我们考虑非静止在线凸优化的框架,其中学习者寻求控制其动态遗憾,免于任意比较器序列。当损耗函数强烈凸或exy-yshave时,我们证明了强烈的自适应(SA)算法可以被视为在比较器序列的路径变化$ V_T $的路径变化中控制动态遗憾的原则方式。具体来说,我们展示了SA算法享受$ \ tilde o(\ sqrt {tv_t} \ vee \ log t)$和$ \ tilde o(\ sqrt {dtv_t} \ vee d \ log t)$动态遗憾强烈凸Exp-Trowave损失分别没有APRIORI $ v_t $。本发明进一步展示了原理方法的多功能性,在与高斯内核的界限线性预测器和在线回归的环境中进一步证明了原则方法。在一个相关的环境下,纸张的第二个组件解决了Zhdanov和Kalnishkan(2010)提出的一个开放问题,涉及与平方误差损失的在线内核回归。我们在一定处罚后悔的新下限,该遗憾地建立了在线内核Ridge回归(KRR)的近极低最低限度。我们的下限可以被视为vovk(2001)中派生的rkhs扩展,以便在有限维中在线线性回归。
translated by 谷歌翻译
我们介绍了一个统一的分析方法,依赖于广义余弦规则和$ \ phi $ -convex在使用动态遗憾的矢量空间中的在线优化作为性能度量标准。在梳理更新规则时,我们从策略为$ S $开始(带有代理线性化损失的乐观 - ftrl的两参数变体策略),并获得$ s $ -i(类型-i放松变体形式的$ s $)和$ s $ -ii(II型放松变种形式的$ s $,它是乐观的md)通过放松。令人遗憾的是$ s $ -i和$ s $ -ii是最紧密的。作为实例化,归属化指数的子射程和贪婪/懒人投影的遗憾范围优于当前已知的最佳结果。通过用单调运算符替换在线游戏的损失,并扩展后悔的定义,即遗憾的$ ^ n $,我们将在线凸优化扩展到在线单调优化,这扩大了$ s $ -i和$ s $的应用范围 - II。
translated by 谷歌翻译
我们考虑在随机凸成本和状态和成本函数的全部反馈下控制未知线性动力学系统的问题。我们提出了一种计算高效的算法,该算法与最佳的稳定线性控制器相比,该算法达到了最佳的$ \ sqrt {t} $遗憾。与以前的工作相反,我们的算法基于面对不确定性范式的乐观情绪。这导致了大大改善的计算复杂性和更简单的分析。
translated by 谷歌翻译
在线优化是一个完善的优化范式,旨在鉴于对以前的决策任务的正确答案,旨在做出一系列正确的决策。二重编程涉及一个分层优化问题,其中所谓的外部问题的可行区域受内部问题的解决方案集映射的限制。本文将这两个想法汇总在一起,并研究了在线双层优化设置,其中一系列随时间变化的二聚体问题又一个接一个地揭示了一个。我们将已知的单层在线算法的已知遗憾界限扩展到双重设置。具体而言,我们引入了新的杂种遗憾概念,开发了一种在线交替的时间平均梯度方法,该方法能够利用光滑度,并根据内部和外部极型序列的长度提供遗憾的界限。
translated by 谷歌翻译
为了通过分布式在线学习中的本地光计算处理复杂的约束,最近的一项研究提出了一种称为分布式在线条件梯度(D-OCG)的无投影算法(D-OCG),并获得了$ O(T^{3/4})$遗憾的是凸出损失,其中$ t $是总回合的数量。但是,它需要$ t $通信回合,并且不能利用强大的损失凸度。在本文中,我们提出了一个改进的D-OCG的变体,即D-BOCG,可以达到相同的$ O(t^{3/4})$遗憾,只有$ o(\ sqrt {t})$凸损失的通信回合,以及$ o(t^{2/3}(\ log t)^{1/3})$的更好遗憾,少于$ o(t^{1/3}(\ log log) t)^{2/3})$通信回合,以实现强烈凸出的损失。关键思想是采用延迟的更新机制,以降低通信复杂性,并重新定义D-OCG中的替代损失功能以利用强凸度。此外,我们提供了下限,以证明D-BOCG所需的$ O(\ sqrt {t})$通信回合是最佳的(以$ t $为单位)实现$ O(T^{3/4} )$遗憾带有凸损失,以及$ o(t^{1/3}(\ log t)^{2/3})$ d-bocg所需的通信回合近距离)实现$ o(t^{2/3}(\ log t)^{1/3})$遗憾的是,强烈凸出的损失归属于多凝集因子。最后,为了处理更具挑战性的强盗设置,其中只有损失值可用,我们将经典的单点梯度估计器纳入D-BOCG,并获得类似的理论保证。
translated by 谷歌翻译
在线学习中,随机数据和对抗性数据是两个广泛研究的设置。但是许多优化任务都不是I.I.D.也不完全对抗,这使得对这些极端之间的世界有更好的理论理解具有根本的利益。在这项工作中,我们在在随机I.I.D.之间插值的环境中建立了在线凸优化的新颖遗憾界限。和完全的对抗损失。通过利用预期损失的平滑度,这些边界用梯度的方差取代对最大梯度长度的依赖,这是以前仅以线性损失而闻名的。此外,它们削弱了I.I.D.假设通过允许对抗中毒的回合,以前在专家和强盗设置中考虑过。我们的结果将其扩展到在线凸优化框架。在完全I.I.D.中情况,我们的界限与随机加速的结果相匹配,并且在完全对抗的情况下,它们优雅地恶化以符合Minimax的遗憾。我们进一步提供了下限,表明所有中级方案的遗憾上限都很紧张,从随机方差和损失梯度的对抗变异方面。
translated by 谷歌翻译
我们开发了一种使用无遗憾的游戏动态解决凸面优化问题的算法框架。通过转换最小化凸起函数以顺序方式解决Min-Max游戏的辅助问题的问题,我们可以考虑一系列必须在另一个之后选择其行动的两名员工的一系列策略。这些策略的常见选择是所谓的无悔的学习算法,我们描述了许多此类并证明了遗憾。然后,我们表明许多凸面优化的经典一阶方法 - 包括平均迭代梯度下降,弗兰克 - 沃尔夫算法,重球算法和Nesterov的加速方法 - 可以被解释为我们框架的特殊情况由于每个玩家都做出正确选择无悔的策略。证明该框架中的收敛速率变得非常简单,因为它们遵循适当已知的遗憾范围。我们的框架还引发了一些凸优化的特殊情况的许多新的一阶方法。
translated by 谷歌翻译
我们开发了一个修改的在线镜下降框架,该框架适用于在无界域中构建自适应和无参数的算法。我们利用这项技术来开发第一个不受限制的在线线性优化算法,从而达到了最佳的动态遗憾,我们进一步证明,基于以下规范化领导者的自然策略无法取得相似的结果。我们还将镜像下降框架应用于构建新的无参数隐式更新,以及简化和改进的无限规模算法。
translated by 谷歌翻译
我们通过反馈信息研究了离线和在线上下文优化的问题,而不是观察损失,我们会在事后观察到最佳的动作,而是对目标功能充分了解的甲骨文。我们的目标是最大程度地减少遗憾,这被定义为我们的损失与全知的甲骨所产生的损失之间的区别。在离线设置中,决策者可以从过去段中获得信息,并且需要做出一个决策,而在在线环境中,决策者在每个时期内都会动态地基于一组新的可行动作和上下文功能,以动态进行决策。 。对于离线设置,我们表征了最佳的最小策略,确定可以实现的性能,这是数据引起的信息的基础几何形状的函数。在在线环境中,我们利用这种几何表征来优化累积遗憾。我们开发了一种算法,该算法在时间范围内产生了对数的第一个遗憾。
translated by 谷歌翻译
资源限制的在线分配问题是收入管理和在线广告中的核心问题。在这些问题中,请求在有限的地平线期间顺序到达,对于每个请求,决策者需要选择消耗一定数量资源并生成奖励的动作。目标是最大限度地提高累计奖励,这是对资源总消费的限制。在本文中,我们考虑一种数据驱动的设置,其中使用决策者未知的输入模型生成每个请求的奖励和资源消耗。我们设计了一般的算法算法,可以在各种输入模型中实现良好的性能,而不知道它们面临的类型类型。特别是,我们的算法在独立和相同的分布式输入以及各种非静止随机输入模型下是渐近的最佳选择,并且当输入是对抗性时,它们达到渐近最佳的固定竞争比率。我们的算法在Lagrangian双色空间中运行:它们为使用在线镜像血管更新的每个资源维护双倍乘数。通过相应地选择参考功能,我们恢复双梯度下降和双乘法权重更新算法。与现有的在线分配问题的现有方法相比,所产生的算法简单,快速,不需要在收入函数,消费函数和动作空间中凸起。我们将应用程序讨论到网络收入管理,在线竞标,重复拍卖,预算限制,与高熵的在线比例匹配,以及具有有限库存的个性化分类优化。
translated by 谷歌翻译
Despite the significant interest and progress in reinforcement learning (RL) problems with adversarial corruption, current works are either confined to the linear setting or lead to an undesired $\tilde{O}(\sqrt{T}\zeta)$ regret bound, where $T$ is the number of rounds and $\zeta$ is the total amount of corruption. In this paper, we consider the contextual bandit with general function approximation and propose a computationally efficient algorithm to achieve a regret of $\tilde{O}(\sqrt{T}+\zeta)$. The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandit \citep{he2022nearly} and a new weighted estimator of uncertainty for the general function class. In contrast to the existing analysis that heavily relies on the linear structure, we develop a novel technique to control the sum of weighted uncertainty, thus establishing the final regret bounds. We then generalize our algorithm to the episodic MDP setting and first achieve an additive dependence on the corruption level $\zeta$ in the scenario of general function approximation. Notably, our algorithms achieve regret bounds either nearly match the performance lower bound or improve the existing methods for all the corruption levels and in both known and unknown $\zeta$ cases.
translated by 谷歌翻译