上下文匪徒问题是一个理论上合理的框架,在各个领域都有广泛的应用程序。虽然先前关于此问题的研究通常需要噪声和上下文之间的独立性,但我们的工作考虑了一个更明智的环境,其中噪声成为影响背景和奖励的潜在混杂因素。这样的混杂设置更现实,可以扩展到更广泛的应用程序。但是,未解决的混杂因素将导致奖励功能估计的偏见,从而导致极大的遗憾。为了应对混杂因素带来的挑战,我们应用了双工具变量回归,该回归可以正确识别真正的奖励功能。我们证明,在两种广泛使用的繁殖核希尔伯特空间中,该方法的收敛速率几乎是最佳的。因此,我们可以根据混杂的匪徒问题的理论保证来设计计算高效和遗憾的算法。数值结果说明了我们提出的算法在混杂的匪徒设置中的功效。
translated by 谷歌翻译
我们介绍了一个多臂强盗模型,其中奖励是多个随机变量的总和,每个动作只会改变其中的分布。每次动作之后,代理都会观察所有变量的实现。该模型是由营销活动和推荐系统激励的,在该系统中,变量代表单个客户的结果,例如点击。我们提出了UCB风格的算法,以估计基线上的动作的提升。我们研究了问题的多种变体,包括何时未知基线和受影响的变量,并证明所有这些变量均具有sublrinear后悔界限。我们还提供了较低的界限,以证明我们的建模假设的必要性是合理的。关于合成和现实世界数据集的实验显示了估计不使用这种结构的策略的振奋方法的好处。
translated by 谷歌翻译
我们解决了条件平均嵌入(CME)的内核脊回归估算的一致性,这是给定$ y $ x $的条件分布的嵌入到目标重现内核hilbert space $ hilbert space $ hilbert Space $ \ Mathcal {H} _y $ $ $ $ 。 CME允许我们对目标RKHS功能的有条件期望,并已在非参数因果和贝叶斯推论中使用。我们解决了错误指定的设置,其中目标CME位于Hilbert-Schmidt操作员的空间中,该操作员从$ \ Mathcal {H} _X _x $和$ L_2 $和$ \ MATHCAL {H} _Y $ $之间的输入插值空间起作用。该操作员的空间被证明是新定义的矢量值插值空间的同构。使用这种同构,我们在未指定的设置下为经验CME估计量提供了一种新颖的自适应统计学习率。我们的分析表明,我们的费率与最佳$ o(\ log n / n)$速率匹配,而无需假设$ \ Mathcal {h} _y $是有限维度。我们进一步建立了学习率的下限,这表明所获得的上限是最佳的。
translated by 谷歌翻译
本文在动态定价的背景下调查预先存在的离线数据对在线学习的影响。我们在$ t $期间的销售地平线上研究单一产品动态定价问题。每个时段的需求由产品价格根据具有未知参数的线性需求模型确定。我们假设在销售地平线开始之前,卖方已经有一些预先存在的离线数据。离线数据集包含$ N $示例,其中每个标准是由历史价格和相关的需求观察组成的输入输出对。卖方希望利用预先存在的离线数据和顺序在线数据来最大限度地减少在线学习过程的遗憾。我们的特征在于在线学习过程的最佳遗憾的脱机数据的大小,位置和分散的联合效果。具体而言,离线数据的大小,位置和色散由历史样本数量为$ n $,平均历史价格与最佳价格$ \ delta $之间的距离以及历史价格的标准差价Sigma $分别。我们表明最佳遗憾是$ \ widetilde \ theta \ left(\ sqrt {t} \ wedge \ frac {t} {(n \ wedge t)\ delta ^ 2 + n \ sigma ^ 2} \右)$,基于“面对不确定性”原则的“乐观主义”的学习算法,其遗憾是最佳的对数因子。我们的结果揭示了对脱机数据的大小的最佳遗憾率的惊人变换,我们称之为阶段转型。此外,我们的结果表明,离线数据的位置和分散也对最佳遗憾具有内在效果,我们通过逆平面法量化了这种效果。
translated by 谷歌翻译
上下文匪徒的模型选择是一个重要的互补问题,以便对固定式模型类进行后悔最小化。我们考虑最简单的模型选择实例:区分从线性上下文强盗问题中的简单的多武装强盗问题。即使在这种情况下,目前的最先进的方法以次优的方式探索,并且需要强烈的“特征分集”条件。在本文中,我们介绍了一种以数据适应方式探索的新算法,b)提供表单$ \ mathcal {o}的模型选择保证(d ^ {\ alpha} t ^ {1- \ alpha} )$,没有任何功能分集条件,其中$ d $表示线性模型的尺寸,$ t $表示圆数的总轮数。第一个算法享有“最佳世界”属性,恢复两种以后的分布假设,同时恢复两种结果。第二种删除分布假设,扩展了易于模型选择的范围。我们的方法在一些额外的假设下延伸到嵌套线性上下文匪徒之间的模型选择。
translated by 谷歌翻译
具有低维结构的随机高维匪徒问题可用于不同的应用程序,例如在线广告和药物发现。在这项工作中,我们为此类问题提出了一种简单的统一算法,并为我们算法的遗憾上限提供了一个一般分析框架。我们表明,在一些温和的统一假设下,我们的算法可以应用于不同的高维匪徒问题。我们的框架利用低维结构来指导问题中的参数估计,因此我们的算法在套索匪徒中达到了可比的遗憾界限,以及低级别矩阵匪徒的新颖界限,组稀疏矩阵强盗和IN组中一个新问题:多代理拉索强盗。
translated by 谷歌翻译
我们研究了批量策略优化中模型选择的问题:给定固定的部分反馈数据集和$ M $ Model类,学习具有与最佳模型类的策略具有竞争力的性能的策略。通过识别任何模型选择算法应最佳地折衷的错误,以线性模型类在与线性模型类中的内容匪徒设置中的问题正式化。(1)近似误差,(2)统计复杂性,(3 )覆盖范围。前两个来源是在监督学习的模型选择中常见的,在最佳的交易中,这些属性得到了很好的研究。相比之下,第三个源是批量策略优化的唯一,并且是由于设置所固有的数据集移位。首先表明,没有批处理策略优化算法可以同时实现所有三个的保证,展示批量策略优化的困难之间的显着对比,以及监督学习中的积极结果。尽管存在这种负面结果,但我们表明,在三个错误源中的任何一个都可以实现实现剩下的两个近乎oracle不平等的算法。我们通过实验结论,证明了这些算法的功效。
translated by 谷歌翻译
当并非观察到所有混杂因子并获得负面对照时,我们研究因果参数的估计。最近的工作表明,这些方法如何通过两个所谓的桥梁函数来实现识别和有效估计。在本文中,我们使用阴性对照来应对因果推断的主要挑战:这些桥梁功能的识别和估计。先前的工作依赖于这些功能的完整性条件,以识别因果参数并在估计中需要进行独特性假设,并且还集中于桥梁函数的参数估计。相反,我们提供了一种新的识别策略,以避免完整性条件。而且,我们根据最小学习公式为这些功能提供新的估计量。这些估计值适合通用功能类别,例如重现Hilbert空间和神经网络。我们研究了有限样本收敛的结果,既可以估计桥梁功能本身,又要在各种假设组合下对因果参数进行最终估计。我们尽可能避免桥梁上的独特条件。
translated by 谷歌翻译
Despite the significant interest and progress in reinforcement learning (RL) problems with adversarial corruption, current works are either confined to the linear setting or lead to an undesired $\tilde{O}(\sqrt{T}\zeta)$ regret bound, where $T$ is the number of rounds and $\zeta$ is the total amount of corruption. In this paper, we consider the contextual bandit with general function approximation and propose a computationally efficient algorithm to achieve a regret of $\tilde{O}(\sqrt{T}+\zeta)$. The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandit \citep{he2022nearly} and a new weighted estimator of uncertainty for the general function class. In contrast to the existing analysis that heavily relies on the linear structure, we develop a novel technique to control the sum of weighted uncertainty, thus establishing the final regret bounds. We then generalize our algorithm to the episodic MDP setting and first achieve an additive dependence on the corruption level $\zeta$ in the scenario of general function approximation. Notably, our algorithms achieve regret bounds either nearly match the performance lower bound or improve the existing methods for all the corruption levels and in both known and unknown $\zeta$ cases.
translated by 谷歌翻译
我们通过审查反馈重复进行一定的第一价格拍卖来研究在线学习,在每次拍卖结束时,出价者只观察获胜的出价,学会了适应性地出价,以最大程度地提高她的累积回报。为了实现这一目标,投标人面临着一个具有挑战性的困境:如果她赢得了竞标 - 获得正收益的唯一方法 - 然后她无法观察其他竞标者的最高竞标,我们认为我们认为这是从中汲取的。一个未知的分布。尽管这一困境让人联想到上下文强盗中的探索探索折衷权,但现有的UCB或汤普森采样算法无法直接解决。在本文中,通过利用第一价格拍卖的结构属性,我们开发了第一个实现$ o(\ sqrt {t} \ log^{2.5} t)$ hearry bund的第一个学习算法(\ sqrt {t} \ log^{2.5} t),这是最小值的最低$ $ \ log $因素,当投标人的私人价值随机生成时。我们这样做是通过在一系列问题上提供算法,称为部分有序的上下文匪徒,该算法将图形反馈跨动作,跨环境跨上下文进行结合,以及在上下文中的部分顺序。我们通过表现出一个奇怪的分离来确定该框架的优势和劣势,即在随机环境下几乎可以独立于动作/背景规模的遗憾,但是在对抗性环境下是不可能的。尽管这一通用框架有限制,但我们进一步利用了第一价格拍卖的结构,并开发了一种学习算法,该算法在存在对手生成的私有价值的情况下,在存在的情况下可以有效地运行样本(并有效地计算)。我们建立了一个$ o(\ sqrt {t} \ log^3 t)$遗憾,以此为此算法,因此提供了对第一价格拍卖的最佳学习保证的完整表征。
translated by 谷歌翻译
We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling (TS) algorithm, using special classes of sparsity-inducing priors (e.g. spike-and-slab) to model the unknown parameter, and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high dimensional and sparse contextual bandits. For faster computation, we use spike-and-slab prior to model the unknown parameter and variational inference instead of MCMC to approximate the posterior distribution. Extensive simulations demonstrate improved performance of our proposed algorithm over existing ones.
translated by 谷歌翻译
在预测功能(假设)中获得可靠的自适应置信度集是顺序决策任务的核心挑战,例如土匪和基于模型的强化学习。这些置信度集合通常依赖于对假设空间的先前假设,例如,繁殖核Hilbert Space(RKHS)的已知核。手动设计此类内核是容易发生的,错误指定可能导致性能差或不安全。在这项工作中,我们建议从离线数据(meta-kel)中进行元学习核。对于未知核是已知碱基核的组合的情况,我们基于结构化的稀疏性开发估计量。在温和的条件下,我们保证我们的估计RKHS会产生有效的置信度集,随着越来越多的离线数据的量,它变得与鉴于真正未知内核的置信度一样紧。我们展示了我们关于内核化强盗问题(又称贝叶斯优化)的方法,我们在其中建立了遗憾的界限,与鉴于真正的内核的人竞争。我们还经验评估方法对贝叶斯优化任务的有效性。
translated by 谷歌翻译
我们为线性上下文匪徒提出了一种新颖的算法(\ sqrt {dt \ log t})$遗憾,其中$ d $是上下文的尺寸,$ t $是时间范围。我们提出的算法配备了一种新型估计量,其中探索通过显式随机化嵌入。根据随机化的不同,我们提出的估计器从所有武器的上下文或选定的上下文中都取得了贡献。我们为我们的估计器建立了一个自称的绑定,这使累积遗憾的新颖分解为依赖添加剂的术语而不是乘法术语。在我们的问题设置下,我们还证明了$ \ omega(\ sqrt {dt})$的新颖下限。因此,我们提出的算法的遗憾与对数因素的下限相匹配。数值实验支持理论保证,并表明我们所提出的方法的表现优于现有的线性匪徒算法。
translated by 谷歌翻译
我们研究了具有连续状态的可观察到的马尔可夫决策过程(POMDPS)的非政策评估问题(OPE)。由最近提出的近端因果推理框架的动机,我们开发了一个非参数识别结果,以通过时间依赖性代理变量的帮助通过所谓的V-bridge函数来估算策略值。然后,我们开发一种拟合的Q评估类型算法来递归估算V桥功能,其中每个步骤都解决了非参数仪器变量(NPIV)问题。通过分析这个具有挑战性的顺序NPIV问题,我们建立了用于估计V桥功能的有限样本误差界限,并因此根据样本量,地平线和所谓(本地)度量来评估策略值,以评估策略值每个步骤都不适。据我们所知,这是非参数模型下POMDP中OPE绑定的第一个有限样本误差。
translated by 谷歌翻译
在线学习和决策中的一个核心问题 - 从土匪到强化学习 - 是要了解哪种建模假设会导致样本有效的学习保证。我们考虑了一个普遍的对抗性决策框架,该框架涵盖了(结构化的)匪徒问题,这些问题与对抗性动力学有关。我们的主要结果是通过新的上限和下限显示决策估计系数,这是Foster等人引入的复杂度度量。在与我们环境的随机对应物中,对于对抗性决策而言是必要和足够的遗憾。但是,与随机设置相比,必须将决策估计系数应用于所考虑的模型类(或假设)的凸壳。这就确定了容纳对抗奖励或动态的价格受凸层化模型类的行为的约束,并恢复了许多现有结果 - 既积极又负面。在获得这些保证的途径中,我们提供了新的结构结果,将决策估计系数与其他众所周知的复杂性度量的变体联系起来,包括Russo和Van Roy的信息比以及Lattimore和Gy的探索目标\“ {o} rgy。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
We study bandit model selection in stochastic environments. Our approach relies on a meta-algorithm that selects between candidate base algorithms. We develop a meta-algorithm-base algorithm abstraction that can work with general classes of base algorithms and different type of adversarial meta-algorithms. Our methods rely on a novel and generic smoothing transformation for bandit algorithms that permits us to obtain optimal $O(\sqrt{T})$ model selection guarantees for stochastic contextual bandit problems as long as the optimal base algorithm satisfies a high probability regret guarantee. We show through a lower bound that even when one of the base algorithms has $O(\log T)$ regret, in general it is impossible to get better than $\Omega(\sqrt{T})$ regret in model selection, even asymptotically. Using our techniques, we address model selection in a variety of problems such as misspecified linear contextual bandits, linear bandit with unknown dimension and reinforcement learning with unknown feature maps. Our algorithm requires the knowledge of the optimal base regret to adjust the meta-algorithm learning rate. We show that without such prior knowledge any meta-algorithm can suffer a regret larger than the optimal base regret.
translated by 谷歌翻译
我们为在一般来源条件下的希尔伯特量表中的新型Tikhonov登记学习问题提供了最小的自适应率。我们的分析不需要在假设类中包含回归函数,并且最著名的是不使用传统的\ textit {先验{先验}假设。使用插值理论,我们证明了Mercer运算符的光谱可以在存在“紧密''$ l^{\ infty} $嵌入的存在的情况下,可以推断出合适的Hilbert鳞片的嵌入。我们的分析利用了新的傅立叶能力条件在某些参数制度中,修改后的Mercer运算符的最佳Lorentz范围空间。
translated by 谷歌翻译
在古典语境匪徒问题中,在每轮$ t $,学习者观察一些上下文$ c $,选择一些动作$ i $执行,并收到一些奖励$ r_ {i,t}(c)$。我们考虑此问题的变体除了接收奖励$ r_ {i,t}(c)$之外,学习者还要学习其他一些上下文$的$ r_ {i,t}(c')$的值C'$ in设置$ \ mathcal {o} _i(c)$;即,通过在不同的上下文下执行该行动来实现的奖励\ mathcal {o} _i(c)$。这种变体出现在若干战略设置中,例如学习如何在非真实的重复拍卖中出价,最热衷于随着许多平台转换为运行的第一价格拍卖。我们将此问题称为交叉学习的上下文匪徒问题。古典上下围匪徒问题的最佳算法达到$ \ tilde {o}(\ sqrt {ckt})$遗憾针对所有固定策略,其中$ c $是上下文的数量,$ k $的行动数量和$ $次数。我们设计并分析了交叉学习的上下文匪徒问题的新算法,并表明他们的遗憾更好地依赖上下文的数量。在选择动作时学习所有上下文的奖励的完整交叉学习下,即设置$ \ mathcal {o} _i(c)$包含所有上下文,我们显示我们的算法实现后悔$ \ tilde {o}( \ sqrt {kt})$,删除$ c $的依赖。对于任何其他情况,即在部分交叉学习下,$ | \ mathcal {o} _i(c)| <c $ for $(i,c)$,遗憾界限取决于如何设置$ \ mathcal o_i(c)$影响上下文之间的交叉学习的程度。我们从Ad Exchange运行一流拍卖的广告交换中模拟了我们的真实拍卖数据的算法,并表明了它们优于传统的上下文强盗算法。
translated by 谷歌翻译
我们在随机多臂匪徒问题中使用固定预算和上下文(协变)信息研究最佳武器识别。在观察上下文信息之后,在每一轮中,我们使用过去的观察和当前上下文选择一个治疗臂。我们的目标是确定最好的治疗组,这是一个在上下文分布中被边缘化的最大预期奖励的治疗组,而错误识别的可能性最小。首先,我们为此问题得出半参数的下限,在这里我们将最佳和次优的治疗臂的预期奖励之间的差距视为感兴趣的参数,以及所有其他参数,例如在上下文中的预期奖励,作为滋扰参数。然后,我们开发“上下文RS-AIPW策略”,该策略由随机采样(RS)规则组成,跟踪目标分配比和使用增强反向概率加权(AIPW)估算器的建议规则。我们提出的上下文RS-AIPW策略是最佳的,因为错误识别概率的上限与预算到Infinity时的半参数下限相匹配,并且差距趋于零。
translated by 谷歌翻译