具有低维结构的随机高维匪徒问题可用于不同的应用程序,例如在线广告和药物发现。在这项工作中,我们为此类问题提出了一种简单的统一算法,并为我们算法的遗憾上限提供了一个一般分析框架。我们表明,在一些温和的统一假设下,我们的算法可以应用于不同的高维匪徒问题。我们的框架利用低维结构来指导问题中的参数估计,因此我们的算法在套索匪徒中达到了可比的遗憾界限,以及低级别矩阵匪徒的新颖界限,组稀疏矩阵强盗和IN组中一个新问题:多代理拉索强盗。
translated by 谷歌翻译
在本文中,我们在稀疏的随机上下文线性土匪中重新审视了遗憾的最小化问题,其中特征向量可能具有很大的尺寸$ d $,但是奖励功能取决于一些,例如$ s_0 \ ll d $,其中这些功能的这些功能只要。我们提出了阈值拉索匪徒,该算法(i)估算了定义奖励功能及其稀疏支持的向量,即显着特征元素,使用带有阈值的Lasso框架,以及(ii)根据此处选择手臂估计预测其支持。该算法不需要对稀疏索引$ s_0 $的先验知识,并且可以在某些对称假设下不含参数。对于这种简单的算法,我们将非偶然的遗憾上限建立为$ \ mathcal {o}(\ log d + d + \ sqrt {t})$一般,为$ \ mathcal {o} log t)$在所谓的边缘条件下(手臂奖励分离的概率条件)。以前的算法的遗憾将其缩放为$ \ Mathcal {o}(\ log D + \ \ sqrt {t \ log(d t)})$和$ \ mathcal {o}(\ log log t \ log t \ log t \ log t \ log d)$设置分别。通过数值实验,我们确认我们的算法优于现有方法。
translated by 谷歌翻译
We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling (TS) algorithm, using special classes of sparsity-inducing priors (e.g. spike-and-slab) to model the unknown parameter, and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high dimensional and sparse contextual bandits. For faster computation, we use spike-and-slab prior to model the unknown parameter and variational inference instead of MCMC to approximate the posterior distribution. Extensive simulations demonstrate improved performance of our proposed algorithm over existing ones.
translated by 谷歌翻译
我们建议使用$ \ tilde {o}(\ sqrt {\ kappa^{ - 1} \ phi t} \ phi t})$ hears $ t $ the $ \ phi $ phi $是$ \ phi $是最olutimut,$ \ phi $是$ \ phi $,我们提出了一种用于广义线性奖励的新颖的上下文强盗算法。上下文协方差和$ \ kappa $的特征值是奖励差异的下限。在几种实际情况下,$ \ phi = o(d)$,我们的结果是带有$ \ sqrt {d} $的广义线性模型(GLM)土匪的第一个遗憾,而无需依赖Auer [2002]的方法。我们使用一个称为双重运动估计器的新型估计器(Doubly-bobust(DR)估计器的子类,但误差较紧,我们就实现了这种结合。 Auer [2002]的方法通过丢弃观察到的奖励来实现独立性,而我们的算法则在使用我们的DDR估计器的所有情况下实现了独立性。我们还提供了一个$ o(\ kappa^{ - 1} \ phi \ log(nt)\ log t)$遗憾在概率的边缘条件下以$ n $武器约束。 Bastani和Bayati [2020]和Bastani等人给出了遗憾的界限。 [2021]在环境中,所有臂都是共同的,但系数是特定的。当所有臂的上下文都不同,但系数很常见时,我们的第一个遗憾是在线性模型或GLM的边缘条件下绑定的。我们使用合成数据和真实示例进行实证研究,证明了我们的算法的有效性。
translated by 谷歌翻译
我们研究了在高维稀疏线性上下文匪徒中动态批处理学习的问题,在给定的最大批量约束下,决策者在每个批次结束时只能观察奖励,可以动态地决定如何进行奖励。许多人将包括在下一批中(在当前批次结束时)以及每批采用哪些个性化行动选择方案。在各种实际情况下,这种批处理的限制无处不在,包括在临床试验中的营销和医疗选择中的个性化产品。我们通过后悔的下限表征了此问题中的基本学习限制,并提供了匹配的上限(直至日志因素),从而为此问题开了最佳方案。据我们所知,我们的工作为在高维稀疏线性上下文匪徒中对动态批处理学习的理论理解提供了第一个侵入。值得注意的是,即使我们的结果的一种特殊情况 - 当不存在批处理约束时 - 都会产生简单的无探索算法使用Lasso估算器,已经达到了在高维线性匪板中为标准在线学习的最小值最佳遗憾(对于No-Cargin情况),在高维上下文Bandits的新兴文献中似乎未知。
translated by 谷歌翻译
我们为线性上下文匪徒提出了一种新颖的算法(\ sqrt {dt \ log t})$遗憾,其中$ d $是上下文的尺寸,$ t $是时间范围。我们提出的算法配备了一种新型估计量,其中探索通过显式随机化嵌入。根据随机化的不同,我们提出的估计器从所有武器的上下文或选定的上下文中都取得了贡献。我们为我们的估计器建立了一个自称的绑定,这使累积遗憾的新颖分解为依赖添加剂的术语而不是乘法术语。在我们的问题设置下,我们还证明了$ \ omega(\ sqrt {dt})$的新颖下限。因此,我们提出的算法的遗憾与对数因素的下限相匹配。数值实验支持理论保证,并表明我们所提出的方法的表现优于现有的线性匪徒算法。
translated by 谷歌翻译
当动作集具有良好的曲率时,我们在任何线性匪徒算法产生的设计矩阵的特征矩阵上介绍了一个非呈现的下限。具体而言,我们表明,每当算法的预期累积后悔为$ o(\ sqrt {n})$时,预期设计矩阵的最低特征值将随着$ \ omega(\ sqrt {n})$的增长而生长为$ n $是学习范围,动作空间在最佳臂周围具有恒定的Hessian。这表明,这种作用空间在离散(即分离良好的)动作空间中迫使多项式下限而不是对数下限,如\ cite {lattimore2017end}所示。此外,虽然先前的结果仅在渐近方案(如$ n \ to \ infty $)中保留,但我们对这些``本地富裕的''动作空间的结果随时都在。此外,在温和的技术假设下,我们以高概率获得了对最小本本特征值的相似下限。我们将结果应用于两个实用的方案 - \ emph {model selection}和\ emph {clustering}在线性匪徒中。对于模型选择,我们表明了一个基于时期的线性匪徒算法适应了真实模型的复杂性,以时代数量的速率指数,借助我们的新频谱结合。对于聚类,我们考虑了一个多代理框架,我们通过利用光谱结果,该框架来证明该框架,该框架,该框架,该框架通过光谱结果,该频谱结果,该框架的结果,该频谱结果,该框架的结果,该频谱结果该框架,该框架的结果不需要强制探索 - 代理商可以运行线性匪徒算法并立即估算其基本参数,从而产生低遗憾。
translated by 谷歌翻译
我们为随机线性匪徒问题提出了一种新的基于自举的在线算法。关键的想法是采用残留的自举勘探,在该探索中,代理商通过重新采样平均奖励估算的残差来估算下一步奖励。我们的算法,随机线性匪徒(\ texttt {linreboot})的残留bootstrap探索,从其重新采样分布中估算了线性奖励,并以最高的奖励估计拉动了手臂。特别是,我们为理论框架做出了一个理论框架,以使基于自举的探索机制在随机线性匪徒问题中脱颖而出。关键见解是,Bootstrap探索的强度基于在线学习模型和残差的重新采样分布之间的乐观情绪。这样的观察使我们能够证明所提出的\ texttt {linreboot}确保了高概率$ \ tilde {o}(d \ sqrt {n})$ sub-linear在温和条件下的遗憾。我们的实验支持\ texttt {重新启动}原理在线性匪徒问题的各种公式中的简易概括性,并显示了\ texttt {linreboot}的显着计算效率。
translated by 谷歌翻译
上下文匪徒问题是一个理论上合理的框架,在各个领域都有广泛的应用程序。虽然先前关于此问题的研究通常需要噪声和上下文之间的独立性,但我们的工作考虑了一个更明智的环境,其中噪声成为影响背景和奖励的潜在混杂因素。这样的混杂设置更现实,可以扩展到更广泛的应用程序。但是,未解决的混杂因素将导致奖励功能估计的偏见,从而导致极大的遗憾。为了应对混杂因素带来的挑战,我们应用了双工具变量回归,该回归可以正确识别真正的奖励功能。我们证明,在两种广泛使用的繁殖核希尔伯特空间中,该方法的收敛速率几乎是最佳的。因此,我们可以根据混杂的匪徒问题的理论保证来设计计算高效和遗憾的算法。数值结果说明了我们提出的算法在混杂的匪徒设置中的功效。
translated by 谷歌翻译
在随机上下文的强盗设置中,对遗憾最小化算法进行了广泛的研究,但是他们的实例最少的最佳武器识别对应物仍然很少研究。在这项工作中,我们将重点关注$(\ epsilon,\ delta)$ - $ \ textit {pac} $设置:给定策略类$ \ pi $,学习者的目标是返回策略的目标, $ \ pi \ in \ pi $的预期奖励在最佳政策的$ \ epsilon $之内,概率大于$ 1- \ delta $。我们表征了第一个$ \ textit {实例依赖性} $ PAC样品通过数量$ \ rho _ {\ pi} $的上下文匪徒的复杂性,并根据$ \ rho _ {\ pi} $提供匹配的上和下限不可知论和线性上下文最佳武器标识设置。我们表明,对于遗憾的最小化和实例依赖性PAC而言,无法同时最小化算法。我们的主要结果是一种新的实例 - 最佳和计算有效算法,该算法依赖于多项式呼叫对Argmax Oracle的调用。
translated by 谷歌翻译
我们研究了线性上下文的匪徒问题,其中代理必须从池中选择一个候选者,每个候选者属于敏感组。在这种情况下,候选人的奖励可能无法直接可比,例如,当代理人是雇主雇用来自不同种族的候选人时,由于歧视性偏见和/或社会不公正,有些群体的奖励较低。我们提出了一个公平的概念,该概念指出,当代理人选择一个相对排名最高的候选人时,它是公平的,这可以衡量与同一组的候选人相比,奖励的良好程度。这是一个非常强烈的公平概念,因为代理没有直接观察到相对等级,而取决于基本的奖励模型和奖励的分布。因此,我们研究了学习政策的问题,该策略在背景之间是独立的,而每个小组之间的奖励分配是绝对连续的。特别是,我们设计了一个贪婪的策略,在每个回合中,从观察到的上下文奖励对构建了脊回归估计器,然后使用经验累积分布函数计算每个候选者的相对等级的估计值。我们证明,贪婪的策略在$ t $ rounds之后达到了日志因素,并且以高概率为止,订单$ \ sqrt {dt} $的合理伪regret,其中$ d $是上下文矢量的尺寸。 The policy also satisfies demographic parity at each round when averaged over all possible information available before the selection.我们最终通过概念模拟证明,我们的政策在实践中也可以实现次线性公平伪rebret。
translated by 谷歌翻译
决策者经常面对“许多匪徒”问题,其中必须同时学习相关但异构的情境匪徒实例。例如,大型零售商可能希望在许多商店中动态地学习产品需求,以解决定价或库存问题,这使得可以共同学习为服务类似客户的商店;或者,医院网络可能希望在许多提供商中动态学习患者风险以分配个性化干预措施,这使得可以为服务类似患者群体的医院共同学习。我们研究每个匪徒实例中未知参数可以分解为全局参数加上稀疏实例特定术语的设置。然后,我们提出了一种新颖的两级估计器,通过使用强大的统计数据组合(在类似的实例中学到)和套索回归(将结果进行替代),以样本有效的方式利用这种结构。我们在强盗算法中嵌入了这个估计器,并证明它在上下文维度下,它可以改善渐近遗憾界限。这种改进是数据较差的实例的指数。我们进一步展示了我们的结果如何依赖于强盗实例的基础网络结构。
translated by 谷歌翻译
我们研究了批量线性上下文匪徒的最佳批量遗憾权衡。对于任何批次数$ M $,操作次数$ k $,时间范围$ t $和维度$ d $,我们提供了一种算法,并证明了其遗憾的保证,这是由于技术原因,具有两阶段表达作为时间的时间$ t $ grose。我们还证明了一个令人奇迹的定理,令人惊讶地显示了在问题参数的“问题参数”中的两相遗憾(最高〜对数因子)的最优性,因此建立了确切的批量后悔权衡。与最近的工作\ citep {ruan2020linear}相比,这表明$ m = o(\ log \ log t)$批次实现无需批处理限制的渐近最佳遗憾的渐近最佳遗憾,我们的算法更简单,更易于实际实现。此外,我们的算法实现了所有$ t \ geq d $的最佳遗憾,而\ citep {ruan2020linear}要求$ t $大于$ d $的不切实际的大多项式。沿着我们的分析,我们还证明了一种新的矩阵集中不平等,依赖于他们的动态上限,这是我们的知识,这是其文学中的第一个和独立兴趣。
translated by 谷歌翻译
在线学习算法广泛用于网络上的搜索和内容优化,必须平衡探索和开发,可能牺牲当前用户的经验,以获得将来会导致未来更好决策的信息。虽然在最坏的情况下,与贪婪算法相比,显式探索具有许多缺点,其通过选择当前看起来最佳的动作始终“利用”。我们在数据中固有的多样性的情况下提出了明确的探索不必要。我们在最近的一系列工作中进行了线性上下围匪盗模型中贪婪算法的平滑分析。我们提高了先前的结果,表明,只要多样性条件保持,贪婪的方法几乎符合任何其他算法的最佳可能性贝叶斯遗憾率,并且这种遗憾是最多的$ \ tilde o(t ^ {1/ 3})$。
translated by 谷歌翻译
上下文匪徒的模型选择是一个重要的互补问题,以便对固定式模型类进行后悔最小化。我们考虑最简单的模型选择实例:区分从线性上下文强盗问题中的简单的多武装强盗问题。即使在这种情况下,目前的最先进的方法以次优的方式探索,并且需要强烈的“特征分集”条件。在本文中,我们介绍了一种以数据适应方式探索的新算法,b)提供表单$ \ mathcal {o}的模型选择保证(d ^ {\ alpha} t ^ {1- \ alpha} )$,没有任何功能分集条件,其中$ d $表示线性模型的尺寸,$ t $表示圆数的总轮数。第一个算法享有“最佳世界”属性,恢复两种以后的分布假设,同时恢复两种结果。第二种删除分布假设,扩展了易于模型选择的范围。我们的方法在一些额外的假设下延伸到嵌套线性上下文匪徒之间的模型选择。
translated by 谷歌翻译
矩阵正常模型,高斯矩阵变化分布的系列,其协方差矩阵是两个较低尺寸因子的Kronecker乘积,经常用于模拟矩阵变化数据。张量正常模型将该家庭推广到三个或更多因素的Kronecker产品。我们研究了矩阵和张量模型中协方差矩阵的Kronecker因子的估计。我们向几个自然度量中的最大似然估计器(MLE)实现的误差显示了非因素界限。与现有范围相比,我们的结果不依赖于条件良好或稀疏的因素。对于矩阵正常模型,我们所有的所有界限都是最佳的对数因子最佳,对于张量正常模型,我们对最大因数和整体协方差矩阵的绑定是最佳的,所以提供足够的样品以获得足够的样品以获得足够的样品常量Frobenius错误。在与我们的样本复杂性范围相同的制度中,我们表明迭代程序计算称为触发器算法称为触发器算法的MLE的线性地收敛,具有高概率。我们的主要工具是Fisher信息度量诱导的正面矩阵的几何中的测地强凸性。这种强大的凸起由某些随机量子通道的扩展来决定。我们还提供了数值证据,使得将触发器算法与简单的收缩估计器组合可以提高缺乏采样制度的性能。
translated by 谷歌翻译
汤普森采样(TS)是解决上下文多武装强盗问题最有效的算法之一。在本文中,我们提出了一种新的算法,称为神经汤普森采样,这适应了深度神经网络,用于勘探和剥削。在我们的算法的核心是一种新的奖励的后分布,其平均值是神经网络近似器,并且其方差建立在相应神经网络的神经切线特征上。我们证明,如果底层奖励函数是有界的,则可以保证所提出的算法来实现$ \ mathcal {o}(t ^ {1/2})$的累积遗憾,它与其他上下文强盗算法的遗憾匹配总轮数量$ t $。各种数据集中其他基准强盗算法的实验比较证实了我们的理论。
translated by 谷歌翻译
We study bandit model selection in stochastic environments. Our approach relies on a meta-algorithm that selects between candidate base algorithms. We develop a meta-algorithm-base algorithm abstraction that can work with general classes of base algorithms and different type of adversarial meta-algorithms. Our methods rely on a novel and generic smoothing transformation for bandit algorithms that permits us to obtain optimal $O(\sqrt{T})$ model selection guarantees for stochastic contextual bandit problems as long as the optimal base algorithm satisfies a high probability regret guarantee. We show through a lower bound that even when one of the base algorithms has $O(\log T)$ regret, in general it is impossible to get better than $\Omega(\sqrt{T})$ regret in model selection, even asymptotically. Using our techniques, we address model selection in a variety of problems such as misspecified linear contextual bandits, linear bandit with unknown dimension and reinforcement learning with unknown feature maps. Our algorithm requires the knowledge of the optimal base regret to adjust the meta-algorithm learning rate. We show that without such prior knowledge any meta-algorithm can suffer a regret larger than the optimal base regret.
translated by 谷歌翻译
本文在动态定价的背景下调查预先存在的离线数据对在线学习的影响。我们在$ t $期间的销售地平线上研究单一产品动态定价问题。每个时段的需求由产品价格根据具有未知参数的线性需求模型确定。我们假设在销售地平线开始之前,卖方已经有一些预先存在的离线数据。离线数据集包含$ N $示例,其中每个标准是由历史价格和相关的需求观察组成的输入输出对。卖方希望利用预先存在的离线数据和顺序在线数据来最大限度地减少在线学习过程的遗憾。我们的特征在于在线学习过程的最佳遗憾的脱机数据的大小,位置和分散的联合效果。具体而言,离线数据的大小,位置和色散由历史样本数量为$ n $,平均历史价格与最佳价格$ \ delta $之间的距离以及历史价格的标准差价Sigma $分别。我们表明最佳遗憾是$ \ widetilde \ theta \ left(\ sqrt {t} \ wedge \ frac {t} {(n \ wedge t)\ delta ^ 2 + n \ sigma ^ 2} \右)$,基于“面对不确定性”原则的“乐观主义”的学习算法,其遗憾是最佳的对数因子。我们的结果揭示了对脱机数据的大小的最佳遗憾率的惊人变换,我们称之为阶段转型。此外,我们的结果表明,离线数据的位置和分散也对最佳遗憾具有内在效果,我们通过逆平面法量化了这种效果。
translated by 谷歌翻译
差异化(DP)随机凸优化(SCO)在可信赖的机器学习算法设计中无处不在。本文研究了DP-SCO问题,该问题是从分布中采样并顺序到达的流媒体数据。我们还考虑了连续发布模型,其中与私人信息相关的参数已在每个新数据(通常称为在线算法)上更新和发布。尽管已经开发了许多算法,以实现不同$ \ ell_p $ norm几何的最佳多余风险,但是没有一个现有的算法可以适应流和持续发布设置。为了解决诸如在线凸优化和隐私保护的挑战,我们提出了一种在线弗兰克 - 沃尔夫算法的私人变体,并带有递归梯度,以减少差异,以更新和揭示每个数据上的参数。结合自适应差异隐私分析,我们的在线算法在线性时间中实现了最佳的超额风险,当$ 1 <p \ leq 2 $和最先进的超额风险达到了非私人较低的风险时,当$ 2 <p \ p \ $ 2 <p \ leq \ infty $。我们的算法也可以扩展到$ p = 1 $的情况,以实现几乎与维度无关的多余风险。虽然先前的递归梯度降低结果仅在独立和分布的样本设置中才具有理论保证,但我们在非平稳环境中建立了这样的保证。为了展示我们方法的优点,我们设计了第一个DP算法,用于具有对数遗憾的高维广义线性土匪。使用多种DP-SCO和DP-Bandit算法的比较实验表现出所提出的算法的功效和实用性。
translated by 谷歌翻译