最近关于神经象征性归纳逻辑编程的工作导致了有希望的方法,可以从嘈杂,现实世界数据中学习解释规则。虽然一些提议近似逻辑运算符,具有不同的逻辑,从模糊或实际值逻辑,无参数,从而无参数,从而减少它们适合数据的容量,其他方法仅基于逻辑摆动,使得难以解释学习的“规则”。在本文中,我们提出了与最近提出的逻辑神经网络(LNN)的学习规则。与其他人相比,LNN与经典布尔逻辑的强大连接,从而允许精确地解释学习规则,同时覆盆可以用基于梯度的优化训练的参数来有效地拟合数据。我们将LNN扩展以在一阶逻辑中引导规则。我们对标准基准测试任务的实验证实,LNN规则是高度可解释的,并且由于其灵活的参数化而可以实现可比或更高的准确性。
translated by 谷歌翻译
我们提出了一种有效的可解释的神经象征模型来解决感应逻辑编程(ILP)问题。在该模型中,该模型是由在分层结构中组织的一组元规则构建的,通过学习嵌入来匹配元规则的事实和身体谓词来发明一阶规则。为了实例化它,我们专门设计了一种表现型通用元规则集,并证明了它们产生的喇叭条件的片段。在培训期间,我们注入了控制的\ PW {gumbel}噪声以避免本地最佳,并采用可解释性 - 正则化术语来进一步指导融合到可解释规则。我们在针对几种最先进的方法上证明我们对各种任务(ILP,视觉基因组,强化学习)的模型进行了验证。
translated by 谷歌翻译
通过归纳逻辑编程(ILP)综合大型逻辑程序通常需要中间定义。但是,用强化谓词混乱假设空间通常会降低性能。相比之下,梯度下降提供了一种有效的方法来在此类高维空间中找到溶液。到目前为止,神经符号ILP方法尚未完全利用这一点。我们提出了一种基于ILP的合成方法,该方法受益于大规模谓词发明,利用了高维梯度下降的功效。我们发现包含十个辅助定义以上的符号解决方案。这超出了现有的神经符号ILP系统的成就,因此构成了该领域的里程碑。
translated by 谷歌翻译
归纳逻辑编程(ILP)是一种机器学习的形式。ILP的目标是诱导推广培训示例的假设(一组逻辑规则)。随着ILP转30,我们提供了对该领域的新介绍。我们介绍了必要的逻辑符号和主要学习环境;描述ILP系统的构建块;比较几个维度的几个系统;描述四个系统(Aleph,Tilde,Aspal和Metagol);突出关键应用领域;最后,总结了未来研究的当前限制和方向。
translated by 谷歌翻译
人工智能代理必须从周围环境中学到学习,并了解所学习的知识,以便做出决定。虽然从数据的最先进的学习通常使用子符号分布式表示,但是使用用于知识表示的一阶逻辑语言,推理通常在更高的抽象级别中有用。结果,将符号AI和神经计算结合成神经符号系统的尝试已经增加。在本文中,我们呈现了逻辑张量网络(LTN),一种神经组织形式和计算模型,通过引入许多值的端到端可分别的一阶逻辑来支持学习和推理,称为真实逻辑作为表示语言深入学习。我们表明LTN为规范提供了统一的语言,以及多个AI任务的计算,如数据聚类,多标签分类,关系学习,查询应答,半监督学习,回归和嵌入学习。我们使用TensorFlow2的许多简单的解释例实施和说明上述每个任务。关键词:神经组音恐怖症,深度学习和推理,许多值逻辑。
translated by 谷歌翻译
尽管在现代的机器学习算法的最新进展,其内在机制的不透明仍是采用的障碍。在人工智能系统灌输信心和信任,解释的人工智能已成为提高现代机器学习算法explainability的响应。归纳逻辑程序(ILP),符号人工智能的子场中,起着产生,因为它的直观的逻辑驱动框架的可解释的解释有希望的作用。 ILP有效利用绎推理产生从实例和背景知识解释的一阶分句理论。然而,在发展中通过ILP需要启发方法的几个挑战,在实践中他们的成功应用来解决。例如,现有的ILP系统通常拥有广阔的解空间,以及感应解决方案是对噪声和干扰非常敏感。本次调查总结在ILP的最新进展和统计关系学习和神经象征算法的讨论,其中提供给ILP协同意见。继最新进展的严格审查,我们划定观察的挑战,突出对发展不言自明的人工智能系统进一步ILP动机研究的潜在途径。
translated by 谷歌翻译
推理,学习和决策的整合是构建更多普通AI系统的关键。作为朝这个方向的一步,我们提出了一种新颖的神经逻辑架构,可以解决电感逻辑编程(ILP)和深增强学习(RL)问题。我们的体系结构通过分配权重来谓词而不是规则来定义一阶逻辑程序的受限但呈现的连续空间。因此,它是完全可分的,可以用梯度下降有效地培训。此外,在与演员批评算法的深度RL设置中,我们提出了一种新颖的高效评论家建筑。与ILP和RL问题的最先进方法相比,我们的命题实现了出色的性能,同时能够提供完全可解释的解决方案和更好地缩放,特别是在测试阶段。
translated by 谷歌翻译
复杂的推理问题是使用逻辑规则最清楚,很容易指定的,但是需要具有汇总的递归规则,例如计数和总和用于实际应用。不幸的是,此类规则的含义是一个重大挑战,导致许多不同的语义分歧。本文介绍了与汇总的递归规则的统一语义,扩展了统一的基础语义和约束语义,以否定为递归规则。关键思想是支持对不同语义基础的不同假设的简单表达,并正交使用其简单的含义来解释聚合操作。我们介绍了语义的形式定义,证明了语义的重要特性,并与先前的语义相比。特别是,我们提出了对聚集的有效推断,该推论为我们从文献中研究的所有示例提供了精确的答案。我们还将语义应用于各种挑战的示例,并表明我们的语义很简单,并且在所有情况下都与所需的结果相匹配。最后,我们描述了最具挑战性的示例实验,当他们可以计算正确的答案时,表现出与知名系统相比出现的出色性能。
translated by 谷歌翻译
Two approaches to AI, neural networks and symbolic systems, have been proven very successful for an array of AI problems. However, neither has been able to achieve the general reasoning ability required for human-like intelligence. It has been argued that this is due to inherent weaknesses in each approach. Luckily, these weaknesses appear to be complementary, with symbolic systems being adept at the kinds of things neural networks have trouble with and vice-versa. The field of neural-symbolic AI attempts to exploit this asymmetry by combining neural networks and symbolic AI into integrated systems. Often this has been done by encoding symbolic knowledge into neural networks. Unfortunately, although many different methods for this have been proposed, there is no common definition of an encoding to compare them. We seek to rectify this problem by introducing a semantic framework for neural-symbolic AI, which is then shown to be general enough to account for a large family of neural-symbolic systems. We provide a number of examples and proofs of the application of the framework to the neural encoding of various forms of knowledge representation and neural network. These, at first sight disparate approaches, are all shown to fall within the framework's formal definition of what we call semantic encoding for neural-symbolic AI.
translated by 谷歌翻译
大型知识图(KGS)提供人类知识的结构化表示。然而,由于不可能包含所有知识,KGs通常不完整。基于现有事实的推理铺平了一种发现缺失事实的方法。在本文中,我们研究了了解完成缺失事实三胞胎的知识图表的推理的学习逻辑规则问题。学习逻辑规则将具有很强的解释性的模型以及概括到类似任务的能力。我们提出了一种称为MPLR的模型,可以改进现有模型以完全使用培训数据,并且考虑多目标方案。此外,考虑到缺乏评估模型表现和开采规则的质量,我们进一步提出了两名新颖的指标来帮助解决问题。实验结果证明我们的MPLR模型在五个基准数据集中优于最先进的方法。结果还证明了指标的有效性。
translated by 谷歌翻译
我们考虑从示例中学习复合代数表达式语义的问题。结果是一个多功能框架,用于研究可以放入以下抽象形式中的学习任务:输入是部分代数$ \ alg $和一组有限的示例$(\ varphi_1,o_1),(\ varphi_2,o_2,o_2),\ ldots $,每个由代数项$ \ varphi_i $和一组对象〜$ o_i $组成。目的是在$ \ alg $中同时填写缺失的代数操作,并将每个$ \ varphi_i $的变量填充$ o_i $,以便优化条款的合并价值。我们通过案例研究在语法推理,图像学习和逻辑场景描述的基础中证明了该框架的适用性。
translated by 谷歌翻译
逻辑神经网络(LNNS)是一种结合神经网络学习能力和正式逻辑能力的能力的体系结构。LLNS为程序员提供了通过逻辑公式隐式修改神经网络的基础结构的能力。在本文中,我们利用此抽象来扩展LNN,以通过一阶理论支持平等和功能符号。这种扩展通过显着增加了他们可以解决的问题的类型来提高LNN的功能。作为概念的证明,我们为IBM的LNN库增加了对平等的一阶理论的支持,并演示了此引入如何允许LNN库现在推理出表达式而无需做出独特的名称假设。
translated by 谷歌翻译
Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be "trained" on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph). In particular, we discuss two fundamentally different kinds of statistical relational models, both of which can scale to massive datasets. The first is based on latent feature models such as tensor factorization and multiway neural networks. The second is based on mining observable patterns in the graph. We also show how to combine these latent and observable models to get improved modeling power at decreased computational cost. Finally, we discuss how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web. To this end, we also discuss Google's Knowledge Vault project as an example of such combination.
translated by 谷歌翻译
在大规模不完整的知识图(kgs)上回答复杂的一阶逻辑(fol)查询是一项重要但挑战性的任务。最近的进步将逻辑查询和KG实体嵌入了相同的空间,并通过密集的相似性搜索进行查询。但是,先前研究中设计的大多数逻辑运算符不满足经典逻辑的公理系统,从而限制了其性能。此外,这些逻辑运算符被参数化,因此需要许多复杂的查询作为训练数据,在大多数现实世界中,这些数据通常很难收集甚至无法访问。因此,我们提出了Fuzzqe,这是一种基于模糊逻辑的逻辑查询嵌入框架,用于回答KGS上的查询。 Fuzzqe遵循模糊逻辑以原则性和无学习的方式定义逻辑运算符,在这种方式中,只有实体和关系嵌入才需要学习。 Fuzzqe可以从标记为训练的复杂逻辑查询中进一步受益。在两个基准数据集上进行的广泛实验表明,与最先进的方法相比,Fuzzqe在回答FOL查询方面提供了明显更好的性能。此外,只有KG链接预测训练的Fuzzqe可以实现与经过额外复杂查询数据训练的人的可比性能。
translated by 谷歌翻译
回答集编程(ASP)已成为一种流行的和相当复杂的声明问题解决方法。这是由于其具有吸引力的地址解决方案的工作流程,这是可以轻松解决问题解决的方法,即使对于计算机科学外的守护者而言。与此不同,底层技术的高度复杂性使得ASP专家越来越难以将想法付诸实践。有关解决此问题,本教程旨在使用户能够构建自己的基于ASP的系统。更确切地说,我们展示了ASP系统Clingo如何用于扩展ASP和实现定制的专用系统。为此,我们提出了两个替代方案。我们从传统的AI技术开始,并展示元编程如何用于扩展ASP。这是一种相当轻的方法,依赖于Clingo的reation特征来使用ASP本身表达新功能。与此不同,本教程的主要部分使用传统的编程(在Python中)来通过其应用程序编程接口操纵Clingo。这种方法允许改变和控制ASP的整个模型 - 地面解决工作流程。 COMENT of Clingo的新应用程序课程使我们能够通过自定义类似于Clingo中的进程来绘制Clingo的基础架构。例如,我们可能会互动到程序的抽象语法树,控制各种形式的多射击求解,并为外国推论设置理论传播者。另一种横截面结构,跨越元以及应用程序编程是Clingo的中间格式,即指定底层接地器和求解器之间的界面。我们通过示例和几个非琐碎的案例研究说明了本教程的前述概念和技术。
translated by 谷歌翻译
基于规则的决策模型由于其可解释性而具有吸引力。但是,现有的规则诱导方法通常会导致长期且因此不容易解释的规则模型。这个问题通常可以归因于缺乏适当表达性的词汇,即决策模型中用作文字的相关谓词。大多数现有的规则归纳算法都假定了预定义的文字,从而自然地将文字的定义与规则学习阶段解耦。相比之下,我们提出了关系规则网络(R2N),这是一种神经体系结构,学习了代表数值输入特征之间线性关系以及使用它们的规则的文字关系。这种方法通过直接以端到端的方式将文字学习与规则学习联系起来,为提高诱发决策模型的表现力打开了大门。在基准任务上,我们表明这些学识渊博的文字足够简单,可以保留可解释性,但提高了预测准确性,并提供了与最先进的规则归纳算法相比更简洁的规则。
translated by 谷歌翻译
电子表格广泛用于桌面操作和演示。这些表的风格格式是演示和分析的重要属性。结果,流行的电子表格软件(例如Excel)支持基于数据依赖性规则的自动格式表。不幸的是,编写这些格式规则对于用户来说可能是具有挑战性的,因为这需要了解基础规则语言和数据逻辑。在本文中,我们提出了Cornet,这是一种神经符号系统,该系统解决了从格式化细胞的用户示例中自动学习此类格式规则的新问题。 Cornet从归纳计划的合成中汲取灵感,并根据半监督聚类和迭代决策树学习结合了符号规则,并与神经排名者一起产生条件格式的规则。为了激励和评估我们的方法,我们从超过40k真实电子​​表格的语料库中提取了表格的表格。使用这些数据,我们将短号与各种符号和神经基线进行了比较。我们的结果表明,与这些基线相比,Cornet可以在不同条件下更准确地学习规则。除了从用户示例中学习规则外,我们还提出了两个案例研究,以激发Cornet的其他用途:简化用户条件格式规则并恢复规则,即使用户可能手动格式化了其数据。
translated by 谷歌翻译
形状约束语言(SHACL)是通过验证图表上的某些形状来验证RDF数据的最新W3C推荐语言。先前的工作主要集中在验证问题上,并且仅针对SHACL的简化版本研究了对设计和优化目的至关重要的可满足性和遏制的标准决策问题。此外,SHACL规范不能定义递归定义的约束的语义,这导致文献中提出了几种替代性递归语义。尚未研究这些不同语义与重要决策问题之间的相互作用。在本文中,我们通过向新的一阶语言(称为SCL)的翻译提供了对SHACL的不同特征的全面研究,该语言精确地捕获了SHACL的语义。我们还提出了MSCL,这是SCL的二阶扩展,它使我们能够在单个形式的逻辑框架中定义SHACL的主要递归语义。在这种语言中,我们还提供了对过滤器约束的有效处理,这些滤镜经常在相关文献中被忽略。使用此逻辑,我们为不同的SHACL片段的可满足性和遏制决策问题提供了(联合)可决定性和复杂性结果的详细图。值得注意的是,我们证明这两个问题对于完整的语言都是不可避免的,但是即使面对递归,我们也提供了有趣的功能的可决定性组合。
translated by 谷歌翻译
我们提出了一种调查,其中在构建具有神经网络的模型时包括现有科学知识的方式。纳入领域知识不仅仅是构建科学助理,而且还有许多其他领域,涉及使用人机协作了解数据的其他领域。在许多这样的情况下,基于机器的模型结构可以显着地利用具有以足够精确的形式编码的域的人人类知识。本文审查了通过更改的域名知识:输入,丢失功能和深网络的架构。分类是为了便于阐述:在实践中,我们预计将采用这种变化的组合。在每个类别中,我们描述了所显示的技术,以产生深度神经网络性能的显着变化。
translated by 谷歌翻译
知识图表(KGS)是真实世界事实的结构化表示,是融合人类知识的智能数据库,可以帮助机器模仿人类问题的方法。然而,由于快速迭代的性质以及数据的不完整,KGs通常是巨大的,并且在公斤上有不可避免的事实。对于知识图链接的预测是针对基于现有的知识推理来完成缺少事实的任务。广泛研究了两个主要的研究流:一个学习可以捕获潜在模式的实体和关系的低维嵌入,以及通过采矿逻辑规则的良好解释性。不幸的是,以前的研究很少关注异质的KG。在本文中,我们提出了一种将基于嵌入的学习和逻辑规则挖掘结合的模型,以推断在KG上。具体地,我们研究了从节点程度的角度涉及各种类型的实体和关系的异构kg中的缺失链接的问题。在实验中,我们证明了我们的DegreEmbed模型优于对现实世界的数据集的国家的最先进的方法。同时,我们模型开采的规则具有高质量和可解释性。
translated by 谷歌翻译