基于规则的决策模型由于其可解释性而具有吸引力。但是,现有的规则诱导方法通常会导致长期且因此不容易解释的规则模型。这个问题通常可以归因于缺乏适当表达性的词汇,即决策模型中用作文字的相关谓词。大多数现有的规则归纳算法都假定了预定义的文字,从而自然地将文字的定义与规则学习阶段解耦。相比之下,我们提出了关系规则网络(R2N),这是一种神经体系结构,学习了代表数值输入特征之间线性关系以及使用它们的规则的文字关系。这种方法通过直接以端到端的方式将文字学习与规则学习联系起来,为提高诱发决策模型的表现力打开了大门。在基准任务上,我们表明这些学识渊博的文字足够简单,可以保留可解释性,但提高了预测准确性,并提供了与最先进的规则归纳算法相比更简洁的规则。
translated by 谷歌翻译
人工智能代理必须从周围环境中学到学习,并了解所学习的知识,以便做出决定。虽然从数据的最先进的学习通常使用子符号分布式表示,但是使用用于知识表示的一阶逻辑语言,推理通常在更高的抽象级别中有用。结果,将符号AI和神经计算结合成神经符号系统的尝试已经增加。在本文中,我们呈现了逻辑张量网络(LTN),一种神经组织形式和计算模型,通过引入许多值的端到端可分别的一阶逻辑来支持学习和推理,称为真实逻辑作为表示语言深入学习。我们表明LTN为规范提供了统一的语言,以及多个AI任务的计算,如数据聚类,多标签分类,关系学习,查询应答,半监督学习,回归和嵌入学习。我们使用TensorFlow2的许多简单的解释例实施和说明上述每个任务。关键词:神经组音恐怖症,深度学习和推理,许多值逻辑。
translated by 谷歌翻译
最近关于神经象征性归纳逻辑编程的工作导致了有希望的方法,可以从嘈杂,现实世界数据中学习解释规则。虽然一些提议近似逻辑运算符,具有不同的逻辑,从模糊或实际值逻辑,无参数,从而无参数,从而减少它们适合数据的容量,其他方法仅基于逻辑摆动,使得难以解释学习的“规则”。在本文中,我们提出了与最近提出的逻辑神经网络(LNN)的学习规则。与其他人相比,LNN与经典布尔逻辑的强大连接,从而允许精确地解释学习规则,同时覆盆可以用基于梯度的优化训练的参数来有效地拟合数据。我们将LNN扩展以在一阶逻辑中引导规则。我们对标准基准测试任务的实验证实,LNN规则是高度可解释的,并且由于其灵活的参数化而可以实现可比或更高的准确性。
translated by 谷歌翻译
我们描述了一种基于学习模糊加权规则的连续变量的可解释预测的新方法。我们的模型训练一组加权规则,以最大化预测准确性并最大程度地减少基于本体的“语义损失”功能,包括对规则的用户指定的约束,以最大程度地从用户角度来看,以最大程度地解释所得规则的解释性。该系统将定量的亚符号学习与符号学习和基于领域知识的约束融合。我们在一个案例研究中说明了我们的系统,以预测戒烟行为干预的结果,并表明它表现优于其他可解释的方法,实现与深度学习模型接近的绩效,同时提供透明的解释性,这是决策的必要要求 - 卫生领域的制造者。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
Two approaches to AI, neural networks and symbolic systems, have been proven very successful for an array of AI problems. However, neither has been able to achieve the general reasoning ability required for human-like intelligence. It has been argued that this is due to inherent weaknesses in each approach. Luckily, these weaknesses appear to be complementary, with symbolic systems being adept at the kinds of things neural networks have trouble with and vice-versa. The field of neural-symbolic AI attempts to exploit this asymmetry by combining neural networks and symbolic AI into integrated systems. Often this has been done by encoding symbolic knowledge into neural networks. Unfortunately, although many different methods for this have been proposed, there is no common definition of an encoding to compare them. We seek to rectify this problem by introducing a semantic framework for neural-symbolic AI, which is then shown to be general enough to account for a large family of neural-symbolic systems. We provide a number of examples and proofs of the application of the framework to the neural encoding of various forms of knowledge representation and neural network. These, at first sight disparate approaches, are all shown to fall within the framework's formal definition of what we call semantic encoding for neural-symbolic AI.
translated by 谷歌翻译
推理,学习和决策的整合是构建更多普通AI系统的关键。作为朝这个方向的一步,我们提出了一种新颖的神经逻辑架构,可以解决电感逻辑编程(ILP)和深增强学习(RL)问题。我们的体系结构通过分配权重来谓词而不是规则来定义一阶逻辑程序的受限但呈现的连续空间。因此,它是完全可分的,可以用梯度下降有效地培训。此外,在与演员批评算法的深度RL设置中,我们提出了一种新颖的高效评论家建筑。与ILP和RL问题的最先进方法相比,我们的命题实现了出色的性能,同时能够提供完全可解释的解决方案和更好地缩放,特别是在测试阶段。
translated by 谷歌翻译
尽管在现代的机器学习算法的最新进展,其内在机制的不透明仍是采用的障碍。在人工智能系统灌输信心和信任,解释的人工智能已成为提高现代机器学习算法explainability的响应。归纳逻辑程序(ILP),符号人工智能的子场中,起着产生,因为它的直观的逻辑驱动框架的可解释的解释有希望的作用。 ILP有效利用绎推理产生从实例和背景知识解释的一阶分句理论。然而,在发展中通过ILP需要启发方法的几个挑战,在实践中他们的成功应用来解决。例如,现有的ILP系统通常拥有广阔的解空间,以及感应解决方案是对噪声和干扰非常敏感。本次调查总结在ILP的最新进展和统计关系学习和神经象征算法的讨论,其中提供给ILP协同意见。继最新进展的严格审查,我们划定观察的挑战,突出对发展不言自明的人工智能系统进一步ILP动机研究的潜在途径。
translated by 谷歌翻译
电子表格广泛用于桌面操作和演示。这些表的风格格式是演示和分析的重要属性。结果,流行的电子表格软件(例如Excel)支持基于数据依赖性规则的自动格式表。不幸的是,编写这些格式规则对于用户来说可能是具有挑战性的,因为这需要了解基础规则语言和数据逻辑。在本文中,我们提出了Cornet,这是一种神经符号系统,该系统解决了从格式化细胞的用户示例中自动学习此类格式规则的新问题。 Cornet从归纳计划的合成中汲取灵感,并根据半监督聚类和迭代决策树学习结合了符号规则,并与神经排名者一起产生条件格式的规则。为了激励和评估我们的方法,我们从超过40k真实电子​​表格的语料库中提取了表格的表格。使用这些数据,我们将短号与各种符号和神经基线进行了比较。我们的结果表明,与这些基线相比,Cornet可以在不同条件下更准确地学习规则。除了从用户示例中学习规则外,我们还提出了两个案例研究,以激发Cornet的其他用途:简化用户条件格式规则并恢复规则,即使用户可能手动格式化了其数据。
translated by 谷歌翻译
虽然深增强学习已成为连续决策问题的有希望的机器学习方法,但对于自动驾驶或医疗应用等高利害域来说仍然不够成熟。在这种情况下,学习的政策需要例如可解释,因此可以在任何部署之前检查它(例如,出于安全性和验证原因)。本调查概述了各种方法,以实现加固学习(RL)的更高可解释性。为此,我们将解释性(作为模型的财产区分开来和解释性(作为HOC操作后的讲话,通过代理的干预),并在RL的背景下讨论它们,并强调前概念。特别是,我们认为可译文的RL可能会拥抱不同的刻面:可解释的投入,可解释(转型/奖励)模型和可解释的决策。根据该计划,我们总结和分析了与可解释的RL相关的最近工作,重点是过去10年来发表的论文。我们还简要讨论了一些相关的研究领域并指向一些潜在的有前途的研究方向。
translated by 谷歌翻译
一方面,人工神经网络(ANNS)通常被标记为黑匣子,缺乏可解释性;阻碍了人类对ANNS行为的理解的问题。存在需要生成ANN的有意义的顺序逻辑,用于解释特定输出的生产过程。另一方面,决策树由于它们的代表语言和有效算法的存在而导致更好的可解释性和表现力,以将树木转化为规则。然而,基于可用数据生长决策树可能会产生大于不概括的必要树木或树木。在本文中,我们介绍了来自ANN的规则提取的两种新的多变量决策树(MDT)算法:精确可转换决策树(EC-DT)和扩展的C-NET算法。它们都将纠正的线性单元激活函数转换为代表树的神经网络,这可以进一步用于提取多元规则以进行推理。虽然EC-DT以层式方式转换ANN以表示由网络的隐藏层内隐式学习的决策边界,但扩展的C-Net将来自EC-DT的分解方法与C5树学习算法相结合形成决策规则。结果表明,虽然EC-DT在保持结构和ANN的保真度方面优越,但扩展的C-Net产生了来自ANN的最紧凑且高效的树木。两者都建议的MDT算法生成规则,包括多个属性的组合,以便决策的精确解释。
translated by 谷歌翻译
神经网络(NNS)和决策树(DTS)都是机器学习的流行模型,但具有相互排斥的优势和局限性。为了带来两个世界中的最好,提出了各种方法来明确或隐式地集成NN和DTS。在这项调查中,这些方法是在我们称为神经树(NTS)的学校中组织的。这项调查旨在对NTS进行全面审查,并尝试确定它们如何增强模型的解释性。我们首先提出了NTS的彻底分类学,该分类法表达了NNS和DTS的逐步整合和共同进化。之后,我们根据NTS的解释性和绩效分析,并建议解决其余挑战的可能解决方案。最后,这项调查以讨论有条件计算和向该领域的有希望的方向进行讨论结束。该调查中审查的论文列表及其相应的代码可在以下网址获得:https://github.com/zju-vipa/awesome-neural-trees
translated by 谷歌翻译
我们提出了一种调查,其中在构建具有神经网络的模型时包括现有科学知识的方式。纳入领域知识不仅仅是构建科学助理,而且还有许多其他领域,涉及使用人机协作了解数据的其他领域。在许多这样的情况下,基于机器的模型结构可以显着地利用具有以足够精确的形式编码的域的人人类知识。本文审查了通过更改的域名知识:输入,丢失功能和深网络的架构。分类是为了便于阐述:在实践中,我们预计将采用这种变化的组合。在每个类别中,我们描述了所显示的技术,以产生深度神经网络性能的显着变化。
translated by 谷歌翻译
去年的特征是不透明的自动决策支持系统(例如深神经网络(DNNS))激增。尽管它们具有出色的概括和预测技能,但其功能不允许对其行为获得详细的解释。由于不透明的机器学习模型越来越多地用于在关键环境中做出重要的预测,因此危险是创建和使用不合理或合法的决策。因此,关于赋予机器学习模型具有解释性的重要性有一个普遍的共识。可解释的人工智能(XAI)技术可以用来验证和认证模型输出,并以可信赖,问责制,透明度和公平等理想的概念来增强它们。本指南旨在成为任何具有计算机科学背景的受众的首选手册,旨在获得对机器学习模型的直观见解,并伴随着笔直,快速和直观的解释。本文旨在通过在其特定的日常型号,数据集和用例中应用XAI技术来填补缺乏引人注目的XAI指南。图1充当读者的流程图/地图,应帮助他根据自己的数据类型找到理想的使用方法。在每章中,读者将找到所提出的方法的描述,以及在生物医学应用程序和Python笔记本上使用的示例。它可以轻松修改以应用于特定应用程序。
translated by 谷歌翻译
归纳逻辑编程(ILP)是一种机器学习的形式。ILP的目标是诱导推广培训示例的假设(一组逻辑规则)。随着ILP转30,我们提供了对该领域的新介绍。我们介绍了必要的逻辑符号和主要学习环境;描述ILP系统的构建块;比较几个维度的几个系统;描述四个系统(Aleph,Tilde,Aspal和Metagol);突出关键应用领域;最后,总结了未来研究的当前限制和方向。
translated by 谷歌翻译
我们提出了一种有效的可解释的神经象征模型来解决感应逻辑编程(ILP)问题。在该模型中,该模型是由在分层结构中组织的一组元规则构建的,通过学习嵌入来匹配元规则的事实和身体谓词来发明一阶规则。为了实例化它,我们专门设计了一种表现型通用元规则集,并证明了它们产生的喇叭条件的片段。在培训期间,我们注入了控制的\ PW {gumbel}噪声以避免本地最佳,并采用可解释性 - 正则化术语来进一步指导融合到可解释规则。我们在针对几种最先进的方法上证明我们对各种任务(ILP,视觉基因组,强化学习)的模型进行了验证。
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
Machine learning (ML) models may be deemed confidential due to their sensitive training data, commercial value, or use in security applications. Increasingly often, confidential ML models are being deployed with publicly accessible query interfaces. ML-as-a-service ("predictive analytics") systems are an example: Some allow users to train models on potentially sensitive data and charge others for access on a pay-per-query basis.The tension between model confidentiality and public access motivates our investigation of model extraction attacks. In such attacks, an adversary with black-box access, but no prior knowledge of an ML model's parameters or training data, aims to duplicate the functionality of (i.e., "steal") the model. Unlike in classical learning theory settings, ML-as-a-service offerings may accept partial feature vectors as inputs and include confidence values with predictions. Given these practices, we show simple, efficient attacks that extract target ML models with near-perfect fidelity for popular model classes including logistic regression, neural networks, and decision trees. We demonstrate these attacks against the online services of BigML and Amazon Machine Learning. We further show that the natural countermeasure of omitting confidence values from model outputs still admits potentially harmful model extraction attacks. Our results highlight the need for careful ML model deployment and new model extraction countermeasures.
translated by 谷歌翻译
神经算术逻辑模块已成为一个不断增长的领域,尽管仍然是一个利基领域。这些模块是神经网络,旨在在学习算术和/或逻辑操作中实现系统的概括,例如$ \ {+, - ,\ times,\ div,\ leq,\ leq,\ textrm {and} \} $,同时也可以解释。本文是首次讨论该领域进度的现状,从神经算术逻辑单元(NALU)开始解释关键作品。为了关注Nalu的缺点,我们提供了深入的分析,以理论有关最近模块的设计选择。在实验设置和发现上进行了模块之间的交叉比较,我们在基本实验中强调了不一致,导致无法直接比较跨论文。为了减轻现有的不一致之处,我们创建了一个基准,比较了所有现有的算术nalms。我们通过对NALU的现有应用和需要进一步探索的研究方向进行新的讨论来结束。
translated by 谷歌翻译
在本文中,我们专注于利用自适应架构中分析和规划阶段的神经网络。本文的研究激励案例涉及现有(遗留)自适应架构及其适应逻辑,该逻辑由逻辑规则指定。我们进一步假设需要赋予这些系统,以基于输入和预期输出的示例来学习的能力。解决这种需要的一个简单选择是基于具有神经网络的逻辑规则来替换推理。但是,此步骤带来了几个问题,通常创造至少临时退款。原因是逻辑规则通常代表一个大型和测试的域知识体,如果逻辑规则被神经网络替换,这可能会丢失。此外,通用神经网络的黑匣子性质使系统内部的工作方式混淆,从而引入更不确定性。在本文中,我们介绍了一种方法,使得可以赋予现有的自适应架构具有使用神经网络学习的能力,同时保留在逻辑规则中存在的域知识。我们在基于规则的系统和基于通用神经网络的系统之间介绍了一个连续体。我们展示如何在此连续内导航,并创建一个自然地嵌入原始逻辑规则的神经网络架构以及如何逐步扩展网络的学习潜力,从而控制所有软计算模型固有的不确定性。我们展示并评估了来自两个更大的真实用例的代表摘录的方法。
translated by 谷歌翻译