Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be "trained" on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph). In particular, we discuss two fundamentally different kinds of statistical relational models, both of which can scale to massive datasets. The first is based on latent feature models such as tensor factorization and multiway neural networks. The second is based on mining observable patterns in the graph. We also show how to combine these latent and observable models to get improved modeling power at decreased computational cost. Finally, we discuss how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web. To this end, we also discuss Google's Knowledge Vault project as an example of such combination.
translated by 谷歌翻译
Knowledge graph (KG) embedding is to embed components of a KG including entities and relations into continuous vector spaces, so as to simplify the manipulation while preserving the inherent structure of the KG. It can benefit a variety of downstream tasks such as KG completion and relation extraction, and hence has quickly gained massive attention. In this article, we provide a systematic review of existing techniques, including not only the state-of-the-arts but also those with latest trends. Particularly, we make the review based on the type of information used in the embedding task. Techniques that conduct embedding using only facts observed in the KG are first introduced. We describe the overall framework, specific model design, typical training procedures, as well as pros and cons of such techniques. After that, we discuss techniques that further incorporate additional information besides facts. We focus specifically on the use of entity types, relation paths, textual descriptions, and logical rules. Finally, we briefly introduce how KG embedding can be applied to and benefit a wide variety of downstream tasks such as KG completion, relation extraction, question answering, and so forth.
translated by 谷歌翻译
全球DataSphere快速增加,预计将达到20251年的175个Zettabytes。但是,大多数内容都是非结构化的,并且无法通过机器可以理解。将此数据构建到知识图中,使得智能应用程序具有诸如深度问题的智能应用,推荐系统,语义搜索等。知识图是一种新兴技术,允许使用内容与上下文一起逻辑推理和揭示新的洞察。因此,它提供了必要的语法和推理语义,使得能够解决复杂的医疗保健,安全,金融机构,经济学和业务问题。作为一项结果,企业正在努力建设和维护知识图表,以支持各种下游应用。手动方法太贵了。自动化方案可以降低建设知识图的成本,高达15-250次。本文批评了最先进的自动化技术,以自主地生成近乎人类的近乎人类的质量。此外,它突出了需要解决的不同研究问题,以提供高质量的知识图表
translated by 谷歌翻译
事实证明,信息提取方法可有效从结构化或非结构化数据中提取三重。以(头部实体,关系,尾部实体)形式组织这样的三元组的组织称为知识图(kgs)。当前的大多数知识图都是不完整的。为了在下游任务中使用kgs,希望预测kgs中缺少链接。最近,通过将实体和关系嵌入到低维的矢量空间中,旨在根据先前访问的三元组来预测三元组,从而对KGS表示不同的方法。根据如何独立或依赖对三元组进行处理,我们将知识图完成的任务分为传统和图形神经网络表示学习,并更详细地讨论它们。在传统的方法中,每个三重三倍将独立处理,并在基于GNN的方法中进行处理,三倍也考虑了他们的当地社区。查看全文
translated by 谷歌翻译
最近公布的知识图形嵌入模型的实施,培训和评估的异质性已经公平和彻底的比较困难。为了评估先前公布的结果的再现性,我们在Pykeen软件包中重新实施和评估了21个交互模型。在这里,我们概述了哪些结果可以通过其报告的超参数再现,这只能以备用的超参数再现,并且无法再现,并且可以提供洞察力,以及为什么会有这种情况。然后,我们在四个数据集上进行了大规模的基准测试,其中数千个实验和24,804 GPU的计算时间。我们展示了最佳实践,每个模型的最佳配置以及可以通过先前发布的最佳配置进行改进的洞察。我们的结果强调了模型架构,训练方法,丢失功能和逆关系显式建模的组合对于模型的性能来说至关重要,而不仅由模型架构决定。我们提供了证据表明,在仔细配置时,若干架构可以获得对最先进的结果。我们制定了所有代码,实验配置,结果和分析,导致我们在https://github.com/pykeen/pykeen和https://github.com/pykeen/benchmarking中获得的解释
translated by 谷歌翻译
随着知识图的扩散,具有复杂多界结构的建模数据在统计关系学习领域获得了越来越大的关注。统计关系学习最重要的目标之一是链路预测,即,预测知识图中是否存在某些关系。已经提出了大量模型和算法来执行链路预测,其中张量分解方法已经证明在计算效率和预测准确性方面实现了最先进的性能。然而,现有张量分解模型的共同缺点是缺失的关系和非现有关系是以相同的方式对待,这导致信息丢失。为了解决这个问题,我们提出了一种具有探测链路的二进制张量分解模型,其不仅继承了来自经典张量分解模型的计算效率,还占关联数据的二进制性质。我们所提出的探测张量分解(PTF)模型显示了预测准确性和可解释性的优点
translated by 谷歌翻译
外部知识(A.K.A.侧面信息)在零拍摄学习(ZSL)中起着关键作用,该角色旨在预测从未出现在训练数据中的看不见的类。已被广泛调查了几种外部知识,例如文本和属性,但他们独自受到不完整的语义。因此,一些最近的研究提出了由于其高度富有效力和代表知识的兼容性而使用知识图表(千克)。但是,ZSL社区仍然缺乏用于学习和比较不同外部知识设置和基于不同的KG的ZSL方法的标准基准。在本文中,我们提出了六个资源,涵盖了三个任务,即零拍摄图像分类(ZS-IMGC),零拍摄关系提取(ZS-RE)和零拍KG完成(ZS-KGC)。每个资源都有一个正常的zsl基准标记和包含从文本到属性的kg的kg,从关系知识到逻辑表达式。我们已清楚地介绍了这些资源,包括其建设,统计数据格式和使用情况W.r.t.不同的ZSL方法。更重要的是,我们进行了一项全面的基准研究,具有两个通用和最先进的方法,两种特定方法和一种可解释方法。我们讨论并比较了不同的ZSL范式W.R.T.不同的外部知识设置,并发现我们的资源具有开发更高级ZSL方法的巨大潜力,并为应用KGS进行增强机学习的更多解决方案。所有资源都可以在https://github.com/china-uk-zsl/resources_for_kzsl上获得。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
Wikidata是一个经常更新,社区驱动和多语言知识图形。因此,Wikidata是实体联系的一个有吸引力的基础,这是最近发表论文的增加显而易见的。该调查侧重于四个主题:(1)存在哪些Wikidata实体链接数据集,它们是多么广泛使用,它们是如何构建的? (2)对实体联系数据集的设计进行Wikidata的特点,如果是的话,怎么样? (3)当前实体链接方法如何利用Wikidata的特定特征? (4)现有实体链接方法未开发哪种Wikidata特征?本次调查显示,当前的Wikidata特定实体链接数据集在其他知识图表中的方案中的注释方案中没有不同。因此,没有提升多语言和时间依赖数据集的可能性,是自然适合维基帽的数据集。此外,我们表明大多数实体链接方法使用Wikidata以与任何其他知识图相同的方式,因为任何其他知识图都缺少了利用Wikidata特定特征来提高质量的机会。几乎所有方法都使用标签等特定属性,有时是描述,而是忽略超关系结构等特征。因此,例如,通过包括超关系图嵌入或类型信息,仍有改进的余地。许多方法还包括来自维基百科的信息,这些信息很容易与Wikidata组合并提供有价值的文本信息,Wikidata缺乏。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
机器学习方法尤其是深度神经网络取得了巨大的成功,但其中许多往往依赖于一些标记的样品进行训练。在真实世界的应用中,我们经常需要通过例如具有新兴预测目标和昂贵的样本注释的动态上下文来解决样本短缺。因此,低资源学习,旨在学习具有足够资源(特别是培训样本)的强大预测模型,现在正在被广泛调查。在所有低资源学习研究中,许多人更喜欢以知识图(kg)的形式利用一些辅助信息,这对于知识表示变得越来越受欢迎,以减少对标记样本的依赖。在这项调查中,我们非常全面地审查了90美元的报纸关于两个主要的低资源学习设置 - 零射击学习(ZSL)的预测,从未出现过训练,而且很少拍摄的学习(FSL)预测的新类仅具有可用的少量标记样本。我们首先介绍了ZSL和FSL研究中使用的KGS以及现有的和潜在的KG施工解决方案,然后系统地分类和总结了KG感知ZSL和FSL方法,将它们划分为不同的范例,例如基于映射的映射,数据增强,基于传播和基于优化的。我们接下来呈现了不同的应用程序,包括计算机视觉和自然语言处理中的kg增强预测任务,还包括kg完成的任务,以及每个任务的一些典型评估资源。我们最终讨论了一些关于新学习和推理范式的方面的一些挑战和未来方向,以及高质量的KGs的建设。
translated by 谷歌翻译
我们根据生态毒理学风险评估中使用的主要数据来源创建了知识图表。我们已经将这种知识图表应用于风险评估中的重要任务,即化学效果预测。我们已经评估了在该预测任务的各种几何,分解和卷积模型中嵌入模型的九个知识图形嵌入模型。我们表明,使用知识图形嵌入可以提高与神经网络的效果预测的准确性。此外,我们已经实现了一种微调架构,它将知识图形嵌入到效果预测任务中,并导致更好的性能。最后,我们评估知识图形嵌入模型的某些特征,以阐明各个模型性能。
translated by 谷歌翻译
Graph is an important data representation which appears in a wide diversity of real-world scenarios. Effective graph analytics provides users a deeper understanding of what is behind the data, and thus can benefit a lot of useful applications such as node classification, node recommendation, link prediction, etc. However, most graph analytics methods suffer the high computation and space cost. Graph embedding is an effective yet efficient way to solve the graph analytics problem. It converts the graph data into a low dimensional space in which the graph structural information and graph properties are maximumly preserved. In this survey, we conduct a comprehensive review of the literature in graph embedding. We first introduce the formal definition of graph embedding as well as the related concepts. After that, we propose two taxonomies of graph embedding which correspond to what challenges exist in different graph embedding problem settings and how the existing work address these challenges in their solutions. Finally, we summarize the applications that graph embedding enables and suggest four promising future research directions in terms of computation efficiency, problem settings, techniques and application scenarios.
translated by 谷歌翻译
自动问题应答(QA)系统的目的是以时间有效的方式向用户查询提供答案。通常在数据库(或知识库)或通常被称为语料库的文件集合中找到答案。在过去的几十年里,收购知识的扩散,因此生物医学领域的新科学文章一直是指数增长。因此,即使对于领域专家,也难以跟踪域中的所有信息。随着商业搜索引擎的改进,用户可以在某些情况下键入其查询并获得最相关的一小组文档,以及在某些情况下从文档中的相关片段。但是,手动查找所需信息或答案可能仍然令人疑惑和耗时。这需要开发高效的QA系统,该系统旨在为用户提供精确和精确的答案提供了生物医学领域的自然语言问题。在本文中,我们介绍了用于开发普通域QA系统的基本方法,然后彻底调查生物医学QA系统的不同方面,包括使用结构化数据库和文本集合的基准数据集和几种提出的方​​法。我们还探讨了当前系统的局限性,并探索潜在的途径以获得进一步的进步。
translated by 谷歌翻译
知识图表(KGS)是真实世界事实的结构化表示,是融合人类知识的智能数据库,可以帮助机器模仿人类问题的方法。然而,由于快速迭代的性质以及数据的不完整,KGs通常是巨大的,并且在公斤上有不可避免的事实。对于知识图链接的预测是针对基于现有的知识推理来完成缺少事实的任务。广泛研究了两个主要的研究流:一个学习可以捕获潜在模式的实体和关系的低维嵌入,以及通过采矿逻辑规则的良好解释性。不幸的是,以前的研究很少关注异质的KG。在本文中,我们提出了一种将基于嵌入的学习和逻辑规则挖掘结合的模型,以推断在KG上。具体地,我们研究了从节点程度的角度涉及各种类型的实体和关系的异构kg中的缺失链接的问题。在实验中,我们证明了我们的DegreEmbed模型优于对现实世界的数据集的国家的最先进的方法。同时,我们模型开采的规则具有高质量和可解释性。
translated by 谷歌翻译
越来越多的语义资源提供了人类知识的宝贵储存;但是,错误条目的概率随着尺寸的增加而增加。因此,识别给定知识库的潜在虚假部分的方法正在成为越来越重要的感兴趣领域。在这项工作中,我们展示了对仅结构的链接分析方法的系统评估是否可以提供可扩展手段,以检测可能的异常,以及潜在的有趣的新颖关系候选者。在八种不同的语义资源中评估十三方法,包括基因本体,食品本体,海洋本体论和类似,我们证明了仅限结构的链接分析可以为数据集的子集提供可扩展的异常检测。此外,我们证明,通过考虑符号节点嵌入,可以获得预测(链接)的说明,使得该方法的该分支可能比黑盒更有价值。据我们所知,这是目前,来自不同域的语义资源的不同类型链路分析方法的适用性最广泛的系统研究之一。
translated by 谷歌翻译
In this paper we show the surprising effectiveness of a simple observed features model in comparison to latent feature models on two benchmark knowledge base completion datasets, FB15K and WN18. We also compare latent and observed feature models on a more challenging dataset derived from FB15K, and additionally coupled with textual mentions from a web-scale corpus. We show that the observed features model is most effective at capturing the information present for entity pairs with textual relations, and a combination of the two combines the strengths of both model types.
translated by 谷歌翻译
Knowledge graphs enable a wide variety of applications, including question answering and information retrieval. Despite the great effort invested in their creation and maintenance, even the largest (e.g., Yago, DBPedia or Wikidata) remain incomplete. We introduce Relational Graph Convolutional Networks (R-GCNs) and apply them to two standard knowledge base completion tasks: Link prediction (recovery of missing facts, i.e. subject-predicate-object triples) and entity classification (recovery of missing entity attributes). R-GCNs are related to a recent class of neural networks operating on graphs, and are developed specifically to deal with the highly multi-relational data characteristic of realistic knowledge bases. We demonstrate the effectiveness of R-GCNs as a stand-alone model for entity classification. We further show that factorization models for link prediction such as DistMult can be significantly improved by enriching them with an encoder model to accumulate evidence over multiple inference steps in the relational graph, demonstrating a large improvement of 29.8% on FB15k-237 over a decoder-only baseline. * Equal contribution.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
translated by 谷歌翻译