通过归纳逻辑编程(ILP)综合大型逻辑程序通常需要中间定义。但是,用强化谓词混乱假设空间通常会降低性能。相比之下,梯度下降提供了一种有效的方法来在此类高维空间中找到溶液。到目前为止,神经符号ILP方法尚未完全利用这一点。我们提出了一种基于ILP的合成方法,该方法受益于大规模谓词发明,利用了高维梯度下降的功效。我们发现包含十个辅助定义以上的符号解决方案。这超出了现有的神经符号ILP系统的成就,因此构成了该领域的里程碑。
translated by 谷歌翻译
通过归纳逻辑编程(ILP)学习复杂程序仍然是一个强大的挑战。现有的高阶启用的ILP系统显示出改善的准确性和学习性能,但仍然受到潜在学习机制的局限性的局限性。实验结果表明,我们通过高阶定义从失败范式的多功能学习的延伸显着提高了现有系统所需的繁重人类指导的学习表现。此外,我们提供了一个理论框架,捕获我们的扩展名处理的高阶定义类。
translated by 谷歌翻译
我们提出了一种有效的可解释的神经象征模型来解决感应逻辑编程(ILP)问题。在该模型中,该模型是由在分层结构中组织的一组元规则构建的,通过学习嵌入来匹配元规则的事实和身体谓词来发明一阶规则。为了实例化它,我们专门设计了一种表现型通用元规则集,并证明了它们产生的喇叭条件的片段。在培训期间,我们注入了控制的\ PW {gumbel}噪声以避免本地最佳,并采用可解释性 - 正则化术语来进一步指导融合到可解释规则。我们在针对几种最先进的方法上证明我们对各种任务(ILP,视觉基因组,强化学习)的模型进行了验证。
translated by 谷歌翻译
归纳逻辑编程(ILP)是一种机器学习的形式。ILP的目标是诱导推广培训示例的假设(一组逻辑规则)。随着ILP转30,我们提供了对该领域的新介绍。我们介绍了必要的逻辑符号和主要学习环境;描述ILP系统的构建块;比较几个维度的几个系统;描述四个系统(Aleph,Tilde,Aspal和Metagol);突出关键应用领域;最后,总结了未来研究的当前限制和方向。
translated by 谷歌翻译
尽管在现代的机器学习算法的最新进展,其内在机制的不透明仍是采用的障碍。在人工智能系统灌输信心和信任,解释的人工智能已成为提高现代机器学习算法explainability的响应。归纳逻辑程序(ILP),符号人工智能的子场中,起着产生,因为它的直观的逻辑驱动框架的可解释的解释有希望的作用。 ILP有效利用绎推理产生从实例和背景知识解释的一阶分句理论。然而,在发展中通过ILP需要启发方法的几个挑战,在实践中他们的成功应用来解决。例如,现有的ILP系统通常拥有广阔的解空间,以及感应解决方案是对噪声和干扰非常敏感。本次调查总结在ILP的最新进展和统计关系学习和神经象征算法的讨论,其中提供给ILP协同意见。继最新进展的严格审查,我们划定观察的挑战,突出对发展不言自明的人工智能系统进一步ILP动机研究的潜在途径。
translated by 谷歌翻译
推理,学习和决策的整合是构建更多普通AI系统的关键。作为朝这个方向的一步,我们提出了一种新颖的神经逻辑架构,可以解决电感逻辑编程(ILP)和深增强学习(RL)问题。我们的体系结构通过分配权重来谓词而不是规则来定义一阶逻辑程序的受限但呈现的连续空间。因此,它是完全可分的,可以用梯度下降有效地培训。此外,在与演员批评算法的深度RL设置中,我们提出了一种新颖的高效评论家建筑。与ILP和RL问题的最先进方法相比,我们的命题实现了出色的性能,同时能够提供完全可解释的解决方案和更好地缩放,特别是在测试阶段。
translated by 谷歌翻译
程序中的魔术值是一个恒定的符号,对于执行程序至关重要,但对其选择没有明确的解释。对于现有的程序综合方法,很难学习具有魔法价值的学习程序。为了克服这一限制,我们引入了一种归纳逻辑编程方法,以有效地学习具有魔术价值的程序。我们对包括程序合成,药物设计和游戏玩法在内的各种领域的实验表明,我们的方法可以(i)在预测精度和学习时间方面优于现有方法,(ii)从无限领域中学习魔法价值观,例如PI的值和(iii)比例为具有数百万个恒定符号的域。
translated by 谷歌翻译
Two approaches to AI, neural networks and symbolic systems, have been proven very successful for an array of AI problems. However, neither has been able to achieve the general reasoning ability required for human-like intelligence. It has been argued that this is due to inherent weaknesses in each approach. Luckily, these weaknesses appear to be complementary, with symbolic systems being adept at the kinds of things neural networks have trouble with and vice-versa. The field of neural-symbolic AI attempts to exploit this asymmetry by combining neural networks and symbolic AI into integrated systems. Often this has been done by encoding symbolic knowledge into neural networks. Unfortunately, although many different methods for this have been proposed, there is no common definition of an encoding to compare them. We seek to rectify this problem by introducing a semantic framework for neural-symbolic AI, which is then shown to be general enough to account for a large family of neural-symbolic systems. We provide a number of examples and proofs of the application of the framework to the neural encoding of various forms of knowledge representation and neural network. These, at first sight disparate approaches, are all shown to fall within the framework's formal definition of what we call semantic encoding for neural-symbolic AI.
translated by 谷歌翻译
归纳逻辑编程是一种机器学习,其中从示例中了解了哪些逻辑程序。该学习通常相对于作为逻辑程序提供的一些背景知识发生。本文介绍了底部预处理,一种在ILP系统上生成初始约束的方法必须考虑。底部预处理将思想应用于逆征集到现代ILP系统。逆存在是一种有影响力的早期ILP方法,促进了progol。本文还提供$ \ Bot $ -popper,这是现代ILP系统Popper的底部预处理的实施。实验显示,底部预处理可以降低ILP系统的难题的学习时间。当问题中的背景知识量大时,这种减少可能是特别重要的。
translated by 谷歌翻译
人工智能代理必须从周围环境中学到学习,并了解所学习的知识,以便做出决定。虽然从数据的最先进的学习通常使用子符号分布式表示,但是使用用于知识表示的一阶逻辑语言,推理通常在更高的抽象级别中有用。结果,将符号AI和神经计算结合成神经符号系统的尝试已经增加。在本文中,我们呈现了逻辑张量网络(LTN),一种神经组织形式和计算模型,通过引入许多值的端到端可分别的一阶逻辑来支持学习和推理,称为真实逻辑作为表示语言深入学习。我们表明LTN为规范提供了统一的语言,以及多个AI任务的计算,如数据聚类,多标签分类,关系学习,查询应答,半监督学习,回归和嵌入学习。我们使用TensorFlow2的许多简单的解释例实施和说明上述每个任务。关键词:神经组音恐怖症,深度学习和推理,许多值逻辑。
translated by 谷歌翻译
复杂的推理问题是使用逻辑规则最清楚,很容易指定的,但是需要具有汇总的递归规则,例如计数和总和用于实际应用。不幸的是,此类规则的含义是一个重大挑战,导致许多不同的语义分歧。本文介绍了与汇总的递归规则的统一语义,扩展了统一的基础语义和约束语义,以否定为递归规则。关键思想是支持对不同语义基础的不同假设的简单表达,并正交使用其简单的含义来解释聚合操作。我们介绍了语义的形式定义,证明了语义的重要特性,并与先前的语义相比。特别是,我们提出了对聚集的有效推断,该推论为我们从文献中研究的所有示例提供了精确的答案。我们还将语义应用于各种挑战的示例,并表明我们的语义很简单,并且在所有情况下都与所需的结果相匹配。最后,我们描述了最具挑战性的示例实验,当他们可以计算正确的答案时,表现出与知名系统相比出现的出色性能。
translated by 谷歌翻译
在Meta解释学习(MIL)中,使用作为感应偏差的二阶数据乐曲条款,由用户手动定义。在这项工作中,我们展示了Mil的二阶元素可以通过Mil学习。我们通过$ \ theta $ -subsumption定义元素的一般性排序,并显示用户定义的\ quph {sort metarules}是通过语言类中最常见的\ emph {matrix元素}的专业化来实现的;并且,这些矩阵元素又通过三阶\ EMPH {打孔元素}的专用来导出,该变量在该组原子上量化,并且仅需要用户定义的文字数量的上限。我们表明元素语言的基数是语言中的多项式在打孔元素中的文字数量。我们通过分辨率重新框架MIL作为元素专业化。我们修改MIL Mularule专业化运营商以返回新的元标,而不是一阶条文,并证明新操作员的正确性。我们将新的运营商实施为辛劳,是MIL系统Louise的子系统。我们的实验表明,随着通过辛劳学到的分类元素逐渐取代的用户定义的分类元素,Louise的预测精度保持在训练时间小的成本。我们得出结论,自动导出的元素可以取代用户定义的元标。
translated by 谷歌翻译
最近关于神经象征性归纳逻辑编程的工作导致了有希望的方法,可以从嘈杂,现实世界数据中学习解释规则。虽然一些提议近似逻辑运算符,具有不同的逻辑,从模糊或实际值逻辑,无参数,从而无参数,从而减少它们适合数据的容量,其他方法仅基于逻辑摆动,使得难以解释学习的“规则”。在本文中,我们提出了与最近提出的逻辑神经网络(LNN)的学习规则。与其他人相比,LNN与经典布尔逻辑的强大连接,从而允许精确地解释学习规则,同时覆盆可以用基于梯度的优化训练的参数来有效地拟合数据。我们将LNN扩展以在一阶逻辑中引导规则。我们对标准基准测试任务的实验证实,LNN规则是高度可解释的,并且由于其灵活的参数化而可以实现可比或更高的准确性。
translated by 谷歌翻译
归纳逻辑编程是基于数学逻辑的机器学习形式,该数学逻辑从给定的示例和背景知识中生成逻辑程序。在此项目中,我们扩展了Popper ILP系统以利用多任务学习。我们实施最新方法和几种新策略来提高搜索性能。此外,我们引入了约束保存,该技术可改善所有方法的整体性能。约束保存使系统可以在背景知识集的更新之间传输知识。因此,我们减少了系统执行的重复工作量。此外,约束保存使我们能够从当前的最新迭代加深搜索方法过渡到更有效的广度首次搜索方法。最后,我们尝试了课程学习技术,并显示了它们对该领域的潜在好处。
translated by 谷歌翻译
归纳逻辑编程(ILP)的目标是学习解释一组示例的程序。直到最近,大多数关于ILP的研究有针对性的学习药品计划。 ELASP系统改为了解回答设置程序(ASP)。学习这种表达计划大大扩大了ILP的适用性;例如,启用偏好学习,学习常识知识,包括默认和例外,以及学习非确定性理论。 ILASP的早期版本可以考虑Meta-Level ILP方法,该方法将学习任务作为逻辑程序编码,并将搜索委派给ASP求解器。最近,ILASP已经向一种新的方法转移,这是由冲突驱动的SAT和ASP求解器的启发。该方法的基本思想称为冲突驱动的ILP(CDILP),用于迭代地对假设的搜索进行交互,所述约束的产生,所述约束的产生,其解释了当前假设不包括特定示例的原因。这些覆盖约束允许ilasp不仅仅排除当前假设,而是整整类的假设,不满足覆盖约束。本文正规规范了CDILP方法,并介绍了CDILP的ILASP3和ILASP4系统,该系统被证明比以前的ILASP系统更可扩展,特别是在存在噪声的情况下。逻辑编程理论与实践的考虑(TPLP)。
translated by 谷歌翻译
我们介绍了一种感应逻辑编程方法,将经典的鸿沟和征服搜索结合使用现代约束驱动搜索。我们的任何时间方法都可以学习最佳,递归和大程序并支持谓词发明。我们对三个领域的实验(分类,归纳,普通游戏和计划综合)表明,我们的方法可以提高预测准确性和降低学习时间。
translated by 谷歌翻译
我们提出了神经概率软逻辑(NEUPSL),这是一种新型的神经符号(NESY)框架,将最新的象征性推理与对深神经网络的低水平感知结合在一起。为了明确建模神经和符号表示之间的边界,我们引入了基于NESY Energy模型,这是一个结合神经和符号推理的基于能量的一般模型。使用此框架,我们展示了如何无缝整合神经和符号参数学习和推理。我们进行广泛的经验评估,并表明NEUPSL优于关节推断的现有方法,并且在几乎所有设置中的差异都显着降低。
translated by 谷歌翻译
人工智能的最终目标之一是从原始数据中学习通用和人类解剖知识。神经符号推理方法通过使用手动设计的符号知识库改善神经网络的训练来部分解决此问题。在从原始数据中学到符号知识的情况下,该知识缺乏解决复杂问题所需的表现力。在本文中,我们介绍了神经符号归纳学习者(NSIL),该方法训练神经网络从原始数据中提取潜在概念,而学习符号知识可以解决复杂问题,该知识是根据这些潜在概念定义的。我们方法的新颖性是一种基于神经和符号成分的训练性能,使符号学习者偏向于学习改进的知识的方法。我们评估了两个问题领域的NSIL,这些问题领域需要具有不同级别的复杂性学习知识,并证明NSIL学习知识,而这些知识是不可能使用其他神经符号系统学习的知识,同时就准确性和数据效率而言优于基线模型。
translated by 谷歌翻译
结合神经网络的鲁棒性的目标和象征方法的表征性地重新称为神经象征性AI的兴趣。神经象征性AI的最近进步通常考虑由不相交的神经和符号组件组成的专门定制架构,因此不能表现出所需的增益,这通过将它们集成到统一框架中可以实现。我们介绍斜杠 - 一种新颖的深层概率编程语言(DPPL)。在其核心,斜杠由神经概率谓词(NPPS)和逻辑节目组成,通过答案集编程团结一致。由NPPS产生的概率估计用作逻辑程序和原始输入数据之间的绑定元素,从而允许斜杠来应答任务依赖的逻辑查询。这允许斜杠在统一的框架中优雅地集成符号和神经组件。我们评估Mnist加法的基准数据的斜杠以及DPPLS的新任务,例如缺少数据预测和与最先进的性能设置预测,从而显示了我们方法的有效性和一般性。
translated by 谷歌翻译
我们在答案集编程(ASP)中,提供了全面的可变实例化或接地的理论基础。在ASP的建模语言的语义上构建,我们在(固定点)运营商方面介绍了接地算法的正式表征。专用良好的运营商扮演了一个主要作用,其相关模型提供了划定接地结果以及随机简化的语义指导。我们地址呈现出一种竞技级逻辑程序,该程序包含递归聚合,从而达到现有ASP建模语言的范围。这伴随着一个普通算法框架,详细说明递归聚集体的接地。给定的算法基本上对应于ASP接地器Gringo中使用的算法。
translated by 谷歌翻译