上下文匪徒旨在根据其上下文信息在一组最佳奖励的武器中识别最佳奖励。由于武器通常表现出群体行为和群体之间存在相互影响的事实,我们引入了一个新模型,ARM组图(AGG),节点代表武器组和加权边缘组成组之间的相关性。为了利用丰富的信息,我们提出了一种强盗算法,即ag-ucb,在该算法中,神经网络旨在估计奖励,我们建议利用图形神经网络(GNN)来学习具有相关性的ARM组的表示。为了解决匪徒中的剥削 - 探索困境,我们得出了建立在神经网络(剥削)探索的新的上置信度结合(UCB)。此外,我们证明了Agg-UCB可以实现与过度参数化的神经网络结合的近乎最佳的遗憾,并提供GNN的收敛分析,并具有完全连接的层,这可能具有独立的利益。最后,我们对多个公共数据集的最新基准进行了广泛的实验,显示了拟议算法的有效性。
translated by 谷歌翻译
已经研究了几十年的上下文多武装匪,并适应了各种应用,如在线广告和个性化推荐。为了解决匪徒的开发探索权衡,有三种主要技术:epsilon - 贪婪,汤普森采样(TS)和上置信度(UCB)。在最近的文献中,线性上下窗匪徒采用了脊回归来估计奖励功能,并将其与TS或UCB策略结合起来的探索。但是,这行作品明确假设奖励基于ARM向量的线性函数,在现实世界数据集中可能不是真的。为了克服这一挑战,已经提出了一系列神经基的强盗算法,其中分配了神经网络以学习基础奖励功能,并且TS或UCB适于探索。在本文中,我们提出了一种具有新的探索策略的神经基匪徒方法。除了利用神经网络(开发网络)外学习奖励功能之外,与目前估计的奖励相比,EE-Net采用另一个神经网络(勘探网络)来自适应地学习潜在的增益。然后,构建决策者以将输出与剥削和探索网络组合起来。我们证明了EE-Net实现了$ \ mathcal {o}(\ sqrt {t \ log t})$后悔,它比现有最先进的神经强盗算法更紧密($ \ mathcal {o}(\基于UCB和TS的SQRT {T} \ log t)$。通过对四世界数据集的广泛实验,我们表明EE-Net优于现有的线性和神经匪徒的方法。
translated by 谷歌翻译
我们研究在上下文多臂强盗(MAB)中识别用户簇。上下文mAB是许多真实应用程序的有效工具,例如内容建议和在线广告。实际上,用户依赖性在用户的操作以及奖励中起着至关重要的作用。聚类相似的用户可以提高奖励估计的质量,从而导致更有效的内容建议和有针对性的广告。与传统的聚类设置不同,我们基于未知的匪徒参数聚类用户,该参数将逐步估算。特别是,我们在上下文mAB中定义了群集检测的问题,并提出了一种带有局部聚类过程的Bandit算法,LocB,LocB。而且,我们就聚类的正确性和效率及其遗憾束缚的理论分析提供了有关LICB的理论分析。最后,我们从各个方面评估了提出的算法,这些算法的表现优于最先进的基准。
translated by 谷歌翻译
汤普森采样(TS)是解决上下文多武装强盗问题最有效的算法之一。在本文中,我们提出了一种新的算法,称为神经汤普森采样,这适应了深度神经网络,用于勘探和剥削。在我们的算法的核心是一种新的奖励的后分布,其平均值是神经网络近似器,并且其方差建立在相应神经网络的神经切线特征上。我们证明,如果底层奖励函数是有界的,则可以保证所提出的算法来实现$ \ mathcal {o}(t ^ {1/2})$的累积遗憾,它与其他上下文强盗算法的遗憾匹配总轮数量$ t $。各种数据集中其他基准强盗算法的实验比较证实了我们的理论。
translated by 谷歌翻译
我们考虑使用图形结构数据定义的奖励函数的强盗优化问题。这个问题在分子设计和药物发现中具有重要的应用,在图形排列中,奖励自然不变。这种设置的主要挑战是扩展到大型域,以及带有许多节点的图形。我们通过将置换不变性嵌入我们的模型来解决这些挑战。特别是,我们表明图形神经网络(GNN)可用于估计奖励函数,假设它位于置换不变的加性核的再现内核希尔伯特空间。通过在此类内核与图形神经切线内核(GNTK)之间建立新的联系,我们介绍了第一个GNN信心绑定,并使用它来设计一个带有sublinear遗憾的相位脱口算法。我们的遗憾约束取决于GNTK的最大信息增益,我们也为此提供了界限。虽然奖励功能取决于所有$ n $节点功能,但我们的保证与图形节点$ n $的数量无关。从经验上讲,我们的方法在图形结构域上表现出竞争性能,并表现得很好。
translated by 谷歌翻译
决策者经常面对“许多匪徒”问题,其中必须同时学习相关但异构的情境匪徒实例。例如,大型零售商可能希望在许多商店中动态地学习产品需求,以解决定价或库存问题,这使得可以共同学习为服务类似客户的商店;或者,医院网络可能希望在许多提供商中动态学习患者风险以分配个性化干预措施,这使得可以为服务类似患者群体的医院共同学习。我们研究每个匪徒实例中未知参数可以分解为全局参数加上稀疏实例特定术语的设置。然后,我们提出了一种新颖的两级估计器,通过使用强大的统计数据组合(在类似的实例中学到)和套索回归(将结果进行替代),以样本有效的方式利用这种结构。我们在强盗算法中嵌入了这个估计器,并证明它在上下文维度下,它可以改善渐近遗憾界限。这种改进是数据较差的实例的指数。我们进一步展示了我们的结果如何依赖于强盗实例的基础网络结构。
translated by 谷歌翻译
我们研究上下文多军匪徒设置中的排名问题。学习代理在每个时间步骤中选择一个有序的项目列表,并观察每个位置的随机结果。在在线推荐系统中,显示最有吸引力的项目的有序列表将不是最佳选择,因为位置和项目依赖性都会带来复杂的奖励功能。一个非常天真的例子是,当所有最有吸引力的物品都来自同一类别时,缺乏多样性。我们为此问题在“排序列表”和“设计UCB”和Thompson采样类型算法中对位置和项目依赖性建模。我们证明,遗憾超过$ t $ rounds和$ l $ positions是$ \ tilde {o}(l \ sqrt {d t})$,它的订单与以前在$ t $和$ t $方面的作品相同仅用$ L $线性增加。我们的工作将现有的研究推广到多个方向,包括位置折扣是特定情况的位置依赖性,并提出了更一般的背景匪徒模型。
translated by 谷歌翻译
我们考虑一个多武装的强盗设置,在每一轮的开始时,学习者接收嘈杂的独立,并且可能偏见,\ emph {评估}每个臂的真正奖励,它选择$ k $武器的目标累积尽可能多的奖励超过$ $ rounds。在假设每轮在每个臂的真正奖励从固定分发中汲取的,我们得出了不同的算法方法和理论保证,具体取决于评估的生成方式。首先,在观察功能是真正奖励的遗传化线性函数时,我们在一般情况下展示$ \ widetilde {o}(t ^ {2/3})$后悔。另一方面,当观察功能是真正奖励的嘈杂线性函数时,我们就可以派生改进的$ \ widetilde {o}(\ sqrt {t})$后悔。最后,我们报告了一个实证验证,确认我们的理论发现,与替代方法进行了彻底的比较,并进一步支持在实践中实现这一环境的兴趣。
translated by 谷歌翻译
We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling (TS) algorithm, using special classes of sparsity-inducing priors (e.g. spike-and-slab) to model the unknown parameter, and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high dimensional and sparse contextual bandits. For faster computation, we use spike-and-slab prior to model the unknown parameter and variational inference instead of MCMC to approximate the posterior distribution. Extensive simulations demonstrate improved performance of our proposed algorithm over existing ones.
translated by 谷歌翻译
我们为随机线性匪徒问题提出了一种新的基于自举的在线算法。关键的想法是采用残留的自举勘探,在该探索中,代理商通过重新采样平均奖励估算的残差来估算下一步奖励。我们的算法,随机线性匪徒(\ texttt {linreboot})的残留bootstrap探索,从其重新采样分布中估算了线性奖励,并以最高的奖励估计拉动了手臂。特别是,我们为理论框架做出了一个理论框架,以使基于自举的探索机制在随机线性匪徒问题中脱颖而出。关键见解是,Bootstrap探索的强度基于在线学习模型和残差的重新采样分布之间的乐观情绪。这样的观察使我们能够证明所提出的\ texttt {linreboot}确保了高概率$ \ tilde {o}(d \ sqrt {n})$ sub-linear在温和条件下的遗憾。我们的实验支持\ texttt {重新启动}原理在线性匪徒问题的各种公式中的简易概括性,并显示了\ texttt {linreboot}的显着计算效率。
translated by 谷歌翻译
我们研究了批量线性上下文匪徒的最佳批量遗憾权衡。对于任何批次数$ M $,操作次数$ k $,时间范围$ t $和维度$ d $,我们提供了一种算法,并证明了其遗憾的保证,这是由于技术原因,具有两阶段表达作为时间的时间$ t $ grose。我们还证明了一个令人奇迹的定理,令人惊讶地显示了在问题参数的“问题参数”中的两相遗憾(最高〜对数因子)的最优性,因此建立了确切的批量后悔权衡。与最近的工作\ citep {ruan2020linear}相比,这表明$ m = o(\ log \ log t)$批次实现无需批处理限制的渐近最佳遗憾的渐近最佳遗憾,我们的算法更简单,更易于实际实现。此外,我们的算法实现了所有$ t \ geq d $的最佳遗憾,而\ citep {ruan2020linear}要求$ t $大于$ d $的不切实际的大多项式。沿着我们的分析,我们还证明了一种新的矩阵集中不平等,依赖于他们的动态上限,这是我们的知识,这是其文学中的第一个和独立兴趣。
translated by 谷歌翻译
当动作集具有良好的曲率时,我们在任何线性匪徒算法产生的设计矩阵的特征矩阵上介绍了一个非呈现的下限。具体而言,我们表明,每当算法的预期累积后悔为$ o(\ sqrt {n})$时,预期设计矩阵的最低特征值将随着$ \ omega(\ sqrt {n})$的增长而生长为$ n $是学习范围,动作空间在最佳臂周围具有恒定的Hessian。这表明,这种作用空间在离散(即分离良好的)动作空间中迫使多项式下限而不是对数下限,如\ cite {lattimore2017end}所示。此外,虽然先前的结果仅在渐近方案(如$ n \ to \ infty $)中保留,但我们对这些``本地富裕的''动作空间的结果随时都在。此外,在温和的技术假设下,我们以高概率获得了对最小本本特征值的相似下限。我们将结果应用于两个实用的方案 - \ emph {model selection}和\ emph {clustering}在线性匪徒中。对于模型选择,我们表明了一个基于时期的线性匪徒算法适应了真实模型的复杂性,以时代数量的速率指数,借助我们的新频谱结合。对于聚类,我们考虑了一个多代理框架,我们通过利用光谱结果,该框架来证明该框架,该框架,该框架,该框架通过光谱结果,该频谱结果,该框架的结果,该频谱结果,该框架的结果,该频谱结果该框架,该框架的结果不需要强制探索 - 代理商可以运行线性匪徒算法并立即估算其基本参数,从而产生低遗憾。
translated by 谷歌翻译
动态治疗方案(DTRS)是个性化的,适应性的,多阶段的治疗计划,可将治疗决策适应个人的初始特征,并在随后的每个阶段中的中级结果和特征,在前阶段受到决策的影响。例子包括对糖尿病,癌症和抑郁症等慢性病的个性化一线和二线治疗,这些治疗适应患者对一线治疗,疾病进展和个人特征的反应。尽管现有文献主要集中于估算离线数据(例如从依次随机试验)中的最佳DTR,但我们研究了以在线方式开发最佳DTR的问题,在线与每个人的互动都会影响我们的累积奖励和我们的数据收集,以供我们的数据收集。未来的学习。我们将其称为DTR匪徒问题。我们提出了一种新颖的算法,通过仔细平衡探索和剥削,可以保证当过渡和奖励模型是线性时,可以实现最佳的遗憾。我们证明了我们的算法及其在合成实验和使用现实世界中对重大抑郁症的适应性治疗的案例研究中的好处。
translated by 谷歌翻译
We study bandit model selection in stochastic environments. Our approach relies on a meta-algorithm that selects between candidate base algorithms. We develop a meta-algorithm-base algorithm abstraction that can work with general classes of base algorithms and different type of adversarial meta-algorithms. Our methods rely on a novel and generic smoothing transformation for bandit algorithms that permits us to obtain optimal $O(\sqrt{T})$ model selection guarantees for stochastic contextual bandit problems as long as the optimal base algorithm satisfies a high probability regret guarantee. We show through a lower bound that even when one of the base algorithms has $O(\log T)$ regret, in general it is impossible to get better than $\Omega(\sqrt{T})$ regret in model selection, even asymptotically. Using our techniques, we address model selection in a variety of problems such as misspecified linear contextual bandits, linear bandit with unknown dimension and reinforcement learning with unknown feature maps. Our algorithm requires the knowledge of the optimal base regret to adjust the meta-algorithm learning rate. We show that without such prior knowledge any meta-algorithm can suffer a regret larger than the optimal base regret.
translated by 谷歌翻译
我们研究汤普森采样对上下文匪徒的效率。现有的基于汤普森采样的算法需要构建后验分布的拉普拉斯近似(即高斯分布),这是在一般协方差矩阵中的高维应用中效率低下的效率。此外,高斯近似可能不是对一般奖励产生功能的后验分布的良好替代物。我们提出了一种有效的后采样算法,即Langevin Monte Carlo Thompson采样(LMC-TS),该采样(LMC-TS)使用Markov Chain Monte Carlo(MCMC)方法直接从上下文斑块中的后验分布中直接采样。我们的方法在计算上是有效的,因为它只需要执行嘈杂的梯度下降更新而不构建后验分布的拉普拉斯近似。我们证明,所提出的算法实现了相同的sublinear遗憾,作为一种特殊情况的汤普森采样算法,是上下文匪徒的特殊情况,即线性上下文的强盗。我们在不同上下文匪徒模型上对合成数据和现实世界数据集进行实验,这表明直接从后验进行采样既具有计算上有效又具有竞争性能。
translated by 谷歌翻译
土匪算法已成为交互式建议的参考解决方案。但是,由于这种算法直接与用户进行改进的建议,因此对其实际使用提出了严重的隐私问题。在这项工作中,我们通过基于树的机制提出了一种差异性的线性上下文匪徒算法,以将拉普拉斯或高斯噪声添加到模型参数中。我们的关键见解是,随着模型在在线更新过程中收敛时,其参数的全局灵敏度随着时间的推移而缩小(因此命名为动态全局灵敏度)。与现有解决方案相比,我们动态的全球敏感性分析使我们能够减少噪声以获得$(\ epsilon,\ delta)$ - 差异隐私,并具有$ \ tilde o(\ log {t} \ sqrt中的噪声注入引起的额外遗憾) {t}/\ epsilon)$。我们通过动态全局灵敏度和我们提出的算法的相应上后悔界限提供了严格的理论分析。合成和现实世界数据集的实验结果证实了该算法对现有解决方案的优势。
translated by 谷歌翻译
本文研究了在因果图形模型中设计最佳干预措施序列的问题,以最大程度地减少对事后最佳干预的累积后悔。自然,这是一个因果匪徒问题。重点是线性结构方程模型(SEM)和软干预措施的因果匪徒。假定该图的结构是已知的,并且具有$ n $节点。每个节点都假定使用两种线性机制,一种软干预和一种观察性,产生了$ 2^n $可能的干预措施。现有的因果匪徒算法假设,至少完全指定了奖励节点父母的介入分布。但是,有$ 2^n $这样的分布(一个与每个干预措施相对应),即使在中等尺寸的图中也变得越来越高。本文分配了知道这些分布的假设。提出了两种算法,用于常见者(基于UCB)和贝叶斯(基于汤普森采样)的设置。这些算法的关键思想是避免直接估计$ 2^n $奖励分布,而是估算完全指定SEMS($ n $线性)的参数,并使用它们来计算奖励。在这两种算法中,在噪声和参数空间的有界假设下,累积遗憾的是$ \ tilde {\ cal o}(((2d)^l l \ sqrt {t})$,其中$ d $是图的最高度和$ l $是其最长因果路径的长度。
translated by 谷歌翻译
在许多真实世界应用程序的组合匪徒如内容缓存,必须在满足最小服务要求的同时最大化奖励。此外,基本ARM可用性随着时间的推移而变化,并且采取的行动需要适应奖励最大化的情况。我们提出了一个名为Contexal Combinatial Volatile Birtits的新的强盗模型,具有组阈值来解决这些挑战。我们的模型通过考虑超级臂作为基础臂组的子集来归档组合匪徒。我们寻求最大化超级手臂奖励,同时满足构成超级臂的所有基座组的阈值。为此,我们定义了一个新的遗憾遗嘱,使超级臂奖励最大化与团体奖励满意度合并。为了便于学习,我们假设基臂的平均结果是由上下文索引的高斯过程的样本,并且预期的奖励是Lipschitz在预期的基础臂结果中连续。我们提出了一种算法,称为阈值组合高斯工艺的上置信度界限(TCGP-UCB),最大化累积奖励和满足组奖励阈值之间的余额,并证明它会导致$ \ tilde {o}(k \ sqrt {t \ overline { \ gamma} _ {t}})$后悔具有高概率,其中$ \ overline {\ gamma} _ {t} $是与第一个$ t $轮中出现的基本arm上下文相关联的最大信息增益$ k $是所有在所有轮匝上任何可行行动的超级臂基数。我们在实验中展示了我们的算法累积了与最先进的组合强盗算法相当的奖励,同时采摘群体满足其阈值的动作。
translated by 谷歌翻译
我们建议使用$ \ tilde {o}(\ sqrt {\ kappa^{ - 1} \ phi t} \ phi t})$ hears $ t $ the $ \ phi $ phi $是$ \ phi $是最olutimut,$ \ phi $是$ \ phi $,我们提出了一种用于广义线性奖励的新颖的上下文强盗算法。上下文协方差和$ \ kappa $的特征值是奖励差异的下限。在几种实际情况下,$ \ phi = o(d)$,我们的结果是带有$ \ sqrt {d} $的广义线性模型(GLM)土匪的第一个遗憾,而无需依赖Auer [2002]的方法。我们使用一个称为双重运动估计器的新型估计器(Doubly-bobust(DR)估计器的子类,但误差较紧,我们就实现了这种结合。 Auer [2002]的方法通过丢弃观察到的奖励来实现独立性,而我们的算法则在使用我们的DDR估计器的所有情况下实现了独立性。我们还提供了一个$ o(\ kappa^{ - 1} \ phi \ log(nt)\ log t)$遗憾在概率的边缘条件下以$ n $武器约束。 Bastani和Bayati [2020]和Bastani等人给出了遗憾的界限。 [2021]在环境中,所有臂都是共同的,但系数是特定的。当所有臂的上下文都不同,但系数很常见时,我们的第一个遗憾是在线性模型或GLM的边缘条件下绑定的。我们使用合成数据和真实示例进行实证研究,证明了我们的算法的有效性。
translated by 谷歌翻译
具有低维结构的随机高维匪徒问题可用于不同的应用程序,例如在线广告和药物发现。在这项工作中,我们为此类问题提出了一种简单的统一算法,并为我们算法的遗憾上限提供了一个一般分析框架。我们表明,在一些温和的统一假设下,我们的算法可以应用于不同的高维匪徒问题。我们的框架利用低维结构来指导问题中的参数估计,因此我们的算法在套索匪徒中达到了可比的遗憾界限,以及低级别矩阵匪徒的新颖界限,组稀疏矩阵强盗和IN组中一个新问题:多代理拉索强盗。
translated by 谷歌翻译