我们考虑一个多武装的强盗设置,在每一轮的开始时,学习者接收嘈杂的独立,并且可能偏见,\ emph {评估}每个臂的真正奖励,它选择$ k $武器的目标累积尽可能多的奖励超过$ $ rounds。在假设每轮在每个臂的真正奖励从固定分发中汲取的,我们得出了不同的算法方法和理论保证,具体取决于评估的生成方式。首先,在观察功能是真正奖励的遗传化线性函数时,我们在一般情况下展示$ \ widetilde {o}(t ^ {2/3})$后悔。另一方面,当观察功能是真正奖励的嘈杂线性函数时,我们就可以派生改进的$ \ widetilde {o}(\ sqrt {t})$后悔。最后,我们报告了一个实证验证,确认我们的理论发现,与替代方法进行了彻底的比较,并进一步支持在实践中实现这一环境的兴趣。
translated by 谷歌翻译
We study bandit model selection in stochastic environments. Our approach relies on a meta-algorithm that selects between candidate base algorithms. We develop a meta-algorithm-base algorithm abstraction that can work with general classes of base algorithms and different type of adversarial meta-algorithms. Our methods rely on a novel and generic smoothing transformation for bandit algorithms that permits us to obtain optimal $O(\sqrt{T})$ model selection guarantees for stochastic contextual bandit problems as long as the optimal base algorithm satisfies a high probability regret guarantee. We show through a lower bound that even when one of the base algorithms has $O(\log T)$ regret, in general it is impossible to get better than $\Omega(\sqrt{T})$ regret in model selection, even asymptotically. Using our techniques, we address model selection in a variety of problems such as misspecified linear contextual bandits, linear bandit with unknown dimension and reinforcement learning with unknown feature maps. Our algorithm requires the knowledge of the optimal base regret to adjust the meta-algorithm learning rate. We show that without such prior knowledge any meta-algorithm can suffer a regret larger than the optimal base regret.
translated by 谷歌翻译
我们介绍了一个多臂强盗模型,其中奖励是多个随机变量的总和,每个动作只会改变其中的分布。每次动作之后,代理都会观察所有变量的实现。该模型是由营销活动和推荐系统激励的,在该系统中,变量代表单个客户的结果,例如点击。我们提出了UCB风格的算法,以估计基线上的动作的提升。我们研究了问题的多种变体,包括何时未知基线和受影响的变量,并证明所有这些变量均具有sublrinear后悔界限。我们还提供了较低的界限,以证明我们的建模假设的必要性是合理的。关于合成和现实世界数据集的实验显示了估计不使用这种结构的策略的振奋方法的好处。
translated by 谷歌翻译
我们考虑随机多武装强盗(MAB)问题,延迟影响了行动。在我们的环境中,过去采取的行动在随后的未来影响了ARM奖励。在现实世界中,行动的这种延迟影响是普遍的。例如,为某个社会群体中的人员偿还贷款的能力可能历史上历史上批准贷款申请的频率频率。如果银行将贷款申请拒绝拒绝弱势群体,则可以创建反馈循环,进一步损害该群体中获取贷款的机会。在本文中,我们制定了在多武装匪徒的背景下的行动延迟和长期影响。由于在学习期间,我们将强盗设置概括为对这种“偏置”的依赖性进行编码。目标是随着时间的推移最大化收集的公用事业,同时考虑到历史行动延迟影响所产生的动态。我们提出了一种算法,实现了$ \ tilde {\ mathcal {o}}的遗憾,并显示$ \ omega(kt ^ {2/3})$的匹配遗憾下限,其中$ k $是武器数量,$ t $是学习地平线。我们的结果通过添加技术来补充强盗文献,以处理具有长期影响的行动,并对设计公平算法有影响。
translated by 谷歌翻译
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.
translated by 谷歌翻译
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical performance compared to the stateof-the-art methods. However, many questions regarding its theoretical performance remained open. In this paper, we design and analyze a generalization of Thompson Sampling algorithm for the stochastic contextual multi-armed bandit problem with linear payoff functions, when the contexts are provided by an adaptive adversary. This is among the most important and widely studied version of the contextual bandits problem. We provide the first theoretical guarantees for the contextual version of Thompson Sampling. We prove a high probability regret bound of Õ(d 3/2 √ T ) (or Õ(d T log(N ))), which is the best regret bound achieved by any computationally efficient algorithm for this problem, and is within a factor of √ d (or log(N )) of the information-theoretic lower bound for this problem.
translated by 谷歌翻译
我们为线性上下文匪徒提出了一种新颖的算法(\ sqrt {dt \ log t})$遗憾,其中$ d $是上下文的尺寸,$ t $是时间范围。我们提出的算法配备了一种新型估计量,其中探索通过显式随机化嵌入。根据随机化的不同,我们提出的估计器从所有武器的上下文或选定的上下文中都取得了贡献。我们为我们的估计器建立了一个自称的绑定,这使累积遗憾的新颖分解为依赖添加剂的术语而不是乘法术语。在我们的问题设置下,我们还证明了$ \ omega(\ sqrt {dt})$的新颖下限。因此,我们提出的算法的遗憾与对数因素的下限相匹配。数值实验支持理论保证,并表明我们所提出的方法的表现优于现有的线性匪徒算法。
translated by 谷歌翻译
我们研究了一个顺序决策问题,其中学习者面临$ k $武装的随机匪徒任务的顺序。对手可能会设计任务,但是对手受到限制,以在$ m $ and的较小(但未知)子集中选择每个任务的最佳组。任务边界可能是已知的(强盗元学习设置)或未知(非平稳的强盗设置)。我们设计了一种基于Burnit subsodular最大化的减少的算法,并表明,在大量任务和少数最佳武器的制度中,它在两种情况下的遗憾都比$ \ tilde {o}的简单基线要小。 \ sqrt {knt})$可以通过使用为非平稳匪徒问题设计的标准算法获得。对于固定任务长度$ \ tau $的强盗元学习问题,我们证明该算法的遗憾被限制为$ \ tilde {o}(nm \ sqrt {m \ tau}+n^{2/3} m \ tau)$。在每个任务中最佳武器的可识别性的其他假设下,我们显示了一个带有改进的$ \ tilde {o}(n \ sqrt {m \ tau}+n^{1/2} {1/2} \ sqrt的强盗元学习算法{m k \ tau})$遗憾。
translated by 谷歌翻译
动态治疗方案(DTRS)是个性化的,适应性的,多阶段的治疗计划,可将治疗决策适应个人的初始特征,并在随后的每个阶段中的中级结果和特征,在前阶段受到决策的影响。例子包括对糖尿病,癌症和抑郁症等慢性病的个性化一线和二线治疗,这些治疗适应患者对一线治疗,疾病进展和个人特征的反应。尽管现有文献主要集中于估算离线数据(例如从依次随机试验)中的最佳DTR,但我们研究了以在线方式开发最佳DTR的问题,在线与每个人的互动都会影响我们的累积奖励和我们的数据收集,以供我们的数据收集。未来的学习。我们将其称为DTR匪徒问题。我们提出了一种新颖的算法,通过仔细平衡探索和剥削,可以保证当过渡和奖励模型是线性时,可以实现最佳的遗憾。我们证明了我们的算法及其在合成实验和使用现实世界中对重大抑郁症的适应性治疗的案例研究中的好处。
translated by 谷歌翻译
上下文强盗算法广泛用于域中,其中期望通过利用上下文信息提供个性化服务,这可能包含需要保护的敏感信息。灵感来自这种情况,我们研究了差异隐私(DP)约束的上下文线性强盗问题。虽然文献专注于集中式(联合DP)或本地(本地DP)隐私,但我们考虑了隐私的洗牌模型,我们表明可以在JDP和LDP之间实现隐私/实用权折衷。通过利用隐私和批处理从匪徒进行洗牌,我们介绍了一个遗憾的遗留率$ \ widetilde {\ mathcal {o}}(t ^ {2/3} / \ varepsilon ^ {1/3})$,同时保证中央(联合)和当地隐私。我们的结果表明,通过利用Shuffle模型在保留本地隐私时,可以在JDP和LDP之间获得权衡。
translated by 谷歌翻译
我们研究了随机线性匪徒(LB)中的两个模型选择设置。在我们将其称为特征选择的第一个设置中,LB问题的预期奖励是$ M $特征映射(模型)中至少一个的线性跨度。在第二个设置中,LB问题的奖励参数由$ \ MATHBB r ^ d $中表示(可能)重叠球的$ M $模型任意选择。但是,该代理只能访问错过模型,即球的中心和半径的估计。我们将此设置称为参数选择。对于每个设置,我们开发和分析一种基于从匪徒减少到全信息问题的算法。这允许我们获得遗憾的界限(最多超过$ \ sqrt {\ log m} $ factor)而不是已知真实模型的情况。我们参数选择算法的遗憾也以模型不确定性对数进行缩放。最后,我们经验展现了使用合成和现实世界实验的算法的有效性。
translated by 谷歌翻译
我们考虑使用$ K $臂的随机匪徒问题,每一个都与$ [m,m] $范围内支持的有限分布相关。我们不认为$ [m,m] $是已知的范围,并表明学习此范围有成本。确实,出现了与分销相关和无分配后悔界限之间的新权衡,这阻止了同时实现典型的$ \ ln t $和$ \ sqrt {t} $ bunds。例如,仅当与分布相关的遗憾界限至少属于$ \ sqrt {t} $的顺序时,才能实现$ \ sqrt {t} $}无分布遗憾。我们展示了一项策略,以实现新的权衡表明的遗憾。
translated by 谷歌翻译
我们考虑基于嘈杂的强盗反馈优化黑盒功能的问题。内核强盗算法为此问题显示了强大的实证和理论表现。然而,它们严重依赖于模型所指定的模型,并且没有它可能会失败。相反,我们介绍了一个\ emph {isspecified}内塞的强盗设置,其中未知函数可以是$ \ epsilon $ - 在一些再现内核希尔伯特空间(RKHS)中具有界限范数的函数均匀近似。我们设计高效实用的算法,其性能在模型误操作的存在下最微小地降低。具体而言,我们提出了一种基于高斯过程(GP)方法的两种算法:一种乐观的EC-GP-UCB算法,需要了解误操作误差,并相断的GP不确定性采样,消除型算法,可以适应未知模型拼盘。我们在$ \ epsilon $,时间范围和底层内核方面提供累积遗憾的上限,我们表明我们的算法达到了$ \ epsilon $的最佳依赖性,而没有明确的误解知识。此外,在一个随机的上下文设置中,我们表明EC-GP-UCB可以有效地与遗憾的平衡策略有效地结合,尽管不知道$ \ epsilon $尽管不知道,但仍然可以获得类似的遗憾范围。
translated by 谷歌翻译
In this paper we study the contextual bandit problem (also known as the multi-armed bandit problem with expert advice) for linear payoff functions. For T rounds, K actions, and d dimensional feature vectors, we prove an O T d ln 3 (KT ln(T )/δ) regret bound that holds with probability 1 − δ for the simplest known (both conceptually and computationally) efficient upper confidence bound algorithm for this problem. We also prove a lower bound of Ω( √ T d) for this setting, matching the upper bound up to logarithmic factors.
translated by 谷歌翻译
我们研究了线性上下文的匪徒问题,其中代理必须从池中选择一个候选者,每个候选者属于敏感组。在这种情况下,候选人的奖励可能无法直接可比,例如,当代理人是雇主雇用来自不同种族的候选人时,由于歧视性偏见和/或社会不公正,有些群体的奖励较低。我们提出了一个公平的概念,该概念指出,当代理人选择一个相对排名最高的候选人时,它是公平的,这可以衡量与同一组的候选人相比,奖励的良好程度。这是一个非常强烈的公平概念,因为代理没有直接观察到相对等级,而取决于基本的奖励模型和奖励的分布。因此,我们研究了学习政策的问题,该策略在背景之间是独立的,而每个小组之间的奖励分配是绝对连续的。特别是,我们设计了一个贪婪的策略,在每个回合中,从观察到的上下文奖励对构建了脊回归估计器,然后使用经验累积分布函数计算每个候选者的相对等级的估计值。我们证明,贪婪的策略在$ t $ rounds之后达到了日志因素,并且以高概率为止,订单$ \ sqrt {dt} $的合理伪regret,其中$ d $是上下文矢量的尺寸。 The policy also satisfies demographic parity at each round when averaged over all possible information available before the selection.我们最终通过概念模拟证明,我们的政策在实践中也可以实现次线性公平伪rebret。
translated by 谷歌翻译
在本文中,我们考虑了在规避风险的标准下线性收益的上下文多臂强盗问题。在每个回合中,每个手臂都会揭示上下文,决策者选择一只手臂拉动并获得相应的奖励。特别是,我们将均值变化视为风险标准,最好的组是具有最大均值奖励的均值。我们将汤普森采样算法应用于脱节模型,并为提出算法的变体提供全面的遗憾分析。对于$ t $ rounds,$ k $ Actions和$ d $ - 维功能向量,我们证明了$ o((1+ \ rho+\ frac {1} {1} {\ rho}){\ rho})d \ ln t \ ln t \ ln的遗憾。 \ frac {k} {\ delta} \ sqrt {d k t^{1+2 \ epsilon} \ ln \ frac {k} {\ delta} \ frac {1} {\ epsilon}} $ 1 - \ \ delta $在带有风险公差$ \ rho $的均值方差标准下,对于任何$ 0 <\ epsilon <\ frac {1} {2} $,$ 0 <\ delta <1 $。我们提出的算法的经验性能通过投资组合选择问题来证明。
translated by 谷歌翻译
最近,提出了经典多军强盗的多代理变体来解决在线学习中的公平问题。受社会选择和经济学方面的长期工作的启发,目标是优化NASH的社会福利,而不是全面的效用。不幸的是,就回合$ t $的数量而言,以前的算法要么不是有效的,要么实现次级遗憾。我们提出了一种新的有效算法,其遗憾也比以前效率低下的算法要低。对于$ n $ agents,$ k $ ands和$ t $ rounds,我们的方法遗憾的是$ \ tilde {o}(\ sqrt {nkt} + nk)$。这是对先前方法的改进,后者对$ \ tilde {o}(\ min(nk,\ sqrt {n} k^{3/2})\ sqrt {t})$的遗憾。我们还使用$ \ tilde {o}(\ sqrt {kt} + n^2k)$遗憾的方法来补充有效算法。实验发现证实了与先前方法相比,我们有效算法的有效性。
translated by 谷歌翻译
我们通过审查反馈重复进行一定的第一价格拍卖来研究在线学习,在每次拍卖结束时,出价者只观察获胜的出价,学会了适应性地出价,以最大程度地提高她的累积回报。为了实现这一目标,投标人面临着一个具有挑战性的困境:如果她赢得了竞标 - 获得正收益的唯一方法 - 然后她无法观察其他竞标者的最高竞标,我们认为我们认为这是从中汲取的。一个未知的分布。尽管这一困境让人联想到上下文强盗中的探索探索折衷权,但现有的UCB或汤普森采样算法无法直接解决。在本文中,通过利用第一价格拍卖的结构属性,我们开发了第一个实现$ o(\ sqrt {t} \ log^{2.5} t)$ hearry bund的第一个学习算法(\ sqrt {t} \ log^{2.5} t),这是最小值的最低$ $ \ log $因素,当投标人的私人价值随机生成时。我们这样做是通过在一系列问题上提供算法,称为部分有序的上下文匪徒,该算法将图形反馈跨动作,跨环境跨上下文进行结合,以及在上下文中的部分顺序。我们通过表现出一个奇怪的分离来确定该框架的优势和劣势,即在随机环境下几乎可以独立于动作/背景规模的遗憾,但是在对抗性环境下是不可能的。尽管这一通用框架有限制,但我们进一步利用了第一价格拍卖的结构,并开发了一种学习算法,该算法在存在对手生成的私有价值的情况下,在存在的情况下可以有效地运行样本(并有效地计算)。我们建立了一个$ o(\ sqrt {t} \ log^3 t)$遗憾,以此为此算法,因此提供了对第一价格拍卖的最佳学习保证的完整表征。
translated by 谷歌翻译
在线学习算法广泛用于网络上的搜索和内容优化,必须平衡探索和开发,可能牺牲当前用户的经验,以获得将来会导致未来更好决策的信息。虽然在最坏的情况下,与贪婪算法相比,显式探索具有许多缺点,其通过选择当前看起来最佳的动作始终“利用”。我们在数据中固有的多样性的情况下提出了明确的探索不必要。我们在最近的一系列工作中进行了线性上下围匪盗模型中贪婪算法的平滑分析。我们提高了先前的结果,表明,只要多样性条件保持,贪婪的方法几乎符合任何其他算法的最佳可能性贝叶斯遗憾率,并且这种遗憾是最多的$ \ tilde o(t ^ {1/ 3})$。
translated by 谷歌翻译
我们建议使用$ \ tilde {o}(\ sqrt {\ kappa^{ - 1} \ phi t} \ phi t})$ hears $ t $ the $ \ phi $ phi $是$ \ phi $是最olutimut,$ \ phi $是$ \ phi $,我们提出了一种用于广义线性奖励的新颖的上下文强盗算法。上下文协方差和$ \ kappa $的特征值是奖励差异的下限。在几种实际情况下,$ \ phi = o(d)$,我们的结果是带有$ \ sqrt {d} $的广义线性模型(GLM)土匪的第一个遗憾,而无需依赖Auer [2002]的方法。我们使用一个称为双重运动估计器的新型估计器(Doubly-bobust(DR)估计器的子类,但误差较紧,我们就实现了这种结合。 Auer [2002]的方法通过丢弃观察到的奖励来实现独立性,而我们的算法则在使用我们的DDR估计器的所有情况下实现了独立性。我们还提供了一个$ o(\ kappa^{ - 1} \ phi \ log(nt)\ log t)$遗憾在概率的边缘条件下以$ n $武器约束。 Bastani和Bayati [2020]和Bastani等人给出了遗憾的界限。 [2021]在环境中,所有臂都是共同的,但系数是特定的。当所有臂的上下文都不同,但系数很常见时,我们的第一个遗憾是在线性模型或GLM的边缘条件下绑定的。我们使用合成数据和真实示例进行实证研究,证明了我们的算法的有效性。
translated by 谷歌翻译