在拍卖领域,了解重复拍卖中学习动态的收敛属性是一个及时,重要的问题,例如在线广告市场中有许多应用程序。这项工作着重于重复的首次价格拍卖,该物品具有固定值的竞标者学会使用基于平均值的算法出价 - 大量的在线学习算法,其中包括流行的无regret算法,例如多重权重更新,并遵循扰动的领导者。我们完全表征了基于均值算法的学习动力学,从收敛到拍卖的NASH平衡方面,具有两种感觉:(1)时间平均水平:竞标者在bidiper the NASH平衡方面的回合分数,在极限中均在极限中。 ; (2)最后一题:竞标者的混合策略概况接近限制的NASH平衡。具体而言,结果取决于最高值的投标人的数量: - 如果数量至少为三个,则竞标动力学几乎可以肯定地收敛到拍卖的NASH平衡,无论是在时间平时还是在最后近期的情况下。 - 如果数字为两个,则竞标动力学几乎可以肯定会在时间平时收敛到NASH平衡,但不一定在最后近期。 - 如果数字是一个,则竞标动力学可能不会在时间平均值或最后近期的时间内收敛到NASH平衡。我们的发现为学习算法的融合动力学研究开辟了新的可能性。
translated by 谷歌翻译
我们分析了一种方案,其中软件代理作为后悔最小化算法代表他们的用户参与重复拍卖。我们研究了第一个价格和第二次价格拍卖,以及他们的广义版本(例如,作为用于广告拍卖的版本)。利用理论分析和模拟,我们展示了,令人惊讶的是,在二次价格拍卖中,球员的激励措施将他们的真正估值释放到自己的学习代理,而在第一次价格拍卖中,这是所有球员如实的主要战略向他们的代理商报告他们的估值。
translated by 谷歌翻译
主导的行动是自然的(也许是最简单的)多代理概括的子最优动作,如标准单代理决策中的那样。因此类似于标准强盗学习,多代理系统中的基本学习问题是如果他们只能观察到他们播放动作的回报的嘈杂的强盗反馈,那么代理商可以学会有效地消除所有主导的动作。令人惊讶的是,尽管有一个看似简单的任务,我们展示了一个相当负面的结果;也就是说,标准没有遗憾的算法 - 包括整个双平均算法的家庭 - 可呈指数级地取消逐渐消除所有主导的行动。此外,具有较强的交换后悔的算法也遭受了类似的指数低效率。为了克服这些障碍,我们开发了一种新的算法,调整EXP3,历史奖励减少(exp3-DH); Exp3-DH逐渐忘记仔细量身定制的速率。我们证明,当所有代理运行Exp3-DH(A.K.A.,在多代理学习中自行发行)时,所有主导的行动都可以在多项多轮内迭代地消除。我们的实验结果进一步证明了Exp3-DH的效率,即使是那些专门用于在游戏中学习的最先进的强盗算法,也无法有效地消除所有主导的行动。
translated by 谷歌翻译
我们考虑战略设置,其中几个用户在重复的在线互动中聘用,辅助最小化的代理商代表他们反复发挥“游戏”。我们研究了代理人的重复游戏的动态和平均结果,并将其视为诱导用户之间的元游戏。我们的主要焦点是用户可以在此元游戏中从“操纵”他们自己的代理商中可以受益于他们自己的代理商。我们正式定义了普通游戏的这种“用户代理元荟萃游戏”模型,讨论了自动化代理动态的不同概念下的属性,并分析了2x2游戏中用户的均衡,其中动态收敛到a单均衡。
translated by 谷歌翻译
我们研究供应商和零售商之间的重复游戏,他们希望在不了解问题参数的情况下最大化各自的利润。在用完整的信息表征了舞台游戏的Stackelberg平衡的独特性之后,我们表明,即使有部分了解需求和生产成本的联合分配,自然学习动态也可以保证供应商和零售商共同策略概况的收敛,舞台游戏的平衡。我们还证明了供应商对零售商的遗憾的遗憾和渐近界限的有限时间界限,在该零售商的遗憾中,特定费率取决于玩家初步可用的知识类型。在特殊情况下,当供应商不是战略性的(垂直整合)时,我们证明,当成本和需求是在对抗性和需求时,零售商的遗憾(或等同于社会福利)对零售商的遗憾(或等效地是社会福利)的最佳遗憾。
translated by 谷歌翻译
游戏中的学习理论在AI社区中很突出,这是由多个不断上升的应用程序(例如多代理增强学习和生成对抗性网络)的动机。我们提出了突变驱动的乘法更新(M2WU),以在两人零和零正常形式游戏中学习平衡,并证明它在全面和嘈杂的信息反馈设置中都表现出了最后的题融合属性。在全信息反馈设置中,玩家观察了实用程序功能的确切梯度向量。另一方面,在嘈杂的信息反馈设置中,他们只能观察到嘈杂的梯度向量。现有的算法,包括众所周知的乘法权重更新(MWU)和乐观的MWU(OMWU)算法,未能收敛到具有嘈杂的信息反馈的NASH平衡。相反,在两个反馈设置中,M2WU表现出最后的近期收敛到NASH平衡附近的固定点。然后,我们证明它通过迭代地适应突变项来收敛到精确的NASH平衡。我们从经验上确认,M2WU在可剥削性和收敛速率方面胜过MWU和OMWU。
translated by 谷歌翻译
大多数在线平台都在努力从与用户的互动中学习,许多人从事探索:为了获取新信息而做出潜在的次优选择。我们研究探索与竞争之间的相互作用:这样的平台如何平衡学习探索和用户的竞争。在这里,用户扮演三个不同的角色:他们是产生收入的客户,他们是学习的数据来源,并且是自私的代理商,可以在竞争平台中进行选择。我们考虑了一种风格化的双重垄断模型,其中两家公司面临着相同的多军强盗问题。用户一一到达,并在两家公司之间进行选择,因此,只有在选择它的情况下,每个公司都在其强盗问题上取得进展。通过理论结果和数值模拟的混合,我们研究了竞争是否会激发更好的Bandit算法的采用,以及它是否导致用户增加福利。我们发现,Stark竞争会导致公司致力于导致低福利的“贪婪”强盗算法。但是,通过向公司提供一些“免费”用户来激励更好的探索策略并增加福利来削弱竞争。我们调查了削弱竞争的两个渠道:放松用户的理性并为一家公司带来首次推广优势。我们的发现与“竞争与创新”关系密切相关,并阐明了数字经济中的第一步优势。
translated by 谷歌翻译
本文研究了用于多机构增强学习的政策优化算法。我们首先在全信息设置中提出了针对两人零和零和马尔可夫游戏的算法框架,其中每次迭代均使用一个策略更新,使用某个矩阵游戏算法在每个状态下进行策略更新,并带有一个带有特定的值更新步骤学习率。该框架统一了许多现有和新的政策优化算法。我们表明,只要矩阵游戏算法在每种状态下,该算法的州平均策略会收敛到游戏的近似NASH平衡(NE),只要矩阵游戏算法在每个状态下都具有低称重的遗憾价值更新。接下来,我们证明,该框架与每个状态(和平滑值更新)的乐观跟踪定制领导者(oftrl)算法可以找到$ \ Mathcal {\ widetilde {o}}(t^{ - 5 /6})$ t $迭代中的$近似NE,并且具有稍微修改的值更新规则的类似算法可实现更快的$ \ Mathcal {\ widetilde {o}}}}(t^{ - 1})$收敛率。这些改进了当前最佳$ \ Mathcal {\ widetilde {o}}}(t^{ - 1/2})$对称策略优化类型算法的速率。我们还将此算法扩展到多玩家通用-SUM Markov游戏,并显示$ \ MATHCAL {\ widetilde {o}}}(t^{ - 3/4})$收敛率与粗相关均衡(CCE)。最后,我们提供了一个数值示例来验证我们的理论并研究平滑价值更新的重要性,并发现使用“渴望”的价值更新(等同于独立的自然策略梯度算法)也可能会大大减慢收敛性,即使在$ h = 2 $层的简单游戏。
translated by 谷歌翻译
在古典语境匪徒问题中,在每轮$ t $,学习者观察一些上下文$ c $,选择一些动作$ i $执行,并收到一些奖励$ r_ {i,t}(c)$。我们考虑此问题的变体除了接收奖励$ r_ {i,t}(c)$之外,学习者还要学习其他一些上下文$的$ r_ {i,t}(c')$的值C'$ in设置$ \ mathcal {o} _i(c)$;即,通过在不同的上下文下执行该行动来实现的奖励\ mathcal {o} _i(c)$。这种变体出现在若干战略设置中,例如学习如何在非真实的重复拍卖中出价,最热衷于随着许多平台转换为运行的第一价格拍卖。我们将此问题称为交叉学习的上下文匪徒问题。古典上下围匪徒问题的最佳算法达到$ \ tilde {o}(\ sqrt {ckt})$遗憾针对所有固定策略,其中$ c $是上下文的数量,$ k $的行动数量和$ $次数。我们设计并分析了交叉学习的上下文匪徒问题的新算法,并表明他们的遗憾更好地依赖上下文的数量。在选择动作时学习所有上下文的奖励的完整交叉学习下,即设置$ \ mathcal {o} _i(c)$包含所有上下文,我们显示我们的算法实现后悔$ \ tilde {o}( \ sqrt {kt})$,删除$ c $的依赖。对于任何其他情况,即在部分交叉学习下,$ | \ mathcal {o} _i(c)| <c $ for $(i,c)$,遗憾界限取决于如何设置$ \ mathcal o_i(c)$影响上下文之间的交叉学习的程度。我们从Ad Exchange运行一流拍卖的广告交换中模拟了我们的真实拍卖数据的算法,并表明了它们优于传统的上下文强盗算法。
translated by 谷歌翻译
我们研究了马尔可夫潜在游戏(MPG)中多机构增强学习(RL)问题的策略梯度方法的全球非反应收敛属性。要学习MPG的NASH平衡,在该MPG中,状态空间的大小和/或玩家数量可能非常大,我们建议使用TANDEM所有玩家运行的新的独立政策梯度算法。当梯度评估中没有不确定性时,我们表明我们的算法找到了$ \ epsilon $ -NASH平衡,$ o(1/\ epsilon^2)$迭代复杂性并不明确取决于状态空间大小。如果没有确切的梯度,我们建立$ O(1/\ epsilon^5)$样品复杂度在潜在的无限大型状态空间中,用于利用函数近似的基于样本的算法。此外,我们确定了一类独立的政策梯度算法,这些算法都可以融合零和马尔可夫游戏和马尔可夫合作游戏,并与玩家不喜欢玩的游戏类型。最后,我们提供了计算实验来证实理论发展的优点和有效性。
translated by 谷歌翻译
当今许多大型系统的设计,从交通路由环境到智能电网,都依赖游戏理论平衡概念。但是,随着$ n $玩家游戏的大小通常会随着$ n $而成倍增长,标准游戏理论分析实际上是不可行的。最近的方法通过考虑平均场游戏,匿名$ n $玩家游戏的近似值,在这种限制中,玩家的数量是无限的,而人口的状态分布,而不是每个单独的球员的状态,是兴趣。然而,迄今为止研究最多的平均场平衡的平均场nash平衡的实际可计算性通常取决于有益的非一般结构特性,例如单调性或收缩性能,这是已知的算法收敛所必需的。在这项工作中,我们通过开发均值相关和与粗相关的平衡的概念来研究平均场比赛的替代途径。我们证明,可以使用三种经典算法在\ emph {ash All Games}中有效地学习它们,而无需对游戏结构进行任何其他假设。此外,我们在文献中已经建立了对应关系,从而获得了平均场 - $ n $玩家过渡的最佳范围,并经验证明了这些算法在简单游戏中的收敛性。
translated by 谷歌翻译
我们研究了在几个课程之一的未知会员的对手对对手的反复游戏中保证对反对者的低遗憾的问题。我们添加了我们的算法是非利用的约束,因为对手缺乏使用算法的激励,我们无法实现超过一些“公平”价值的奖励。我们的解决方案是一组专家算法(LAFF),该算法(LAFF)在一组子算法内搜索每个对手课程的最佳算法,并在检测对手剥削证据时使用惩罚政策。通过依赖对手课的基准,我们展示了除了剥削者之外的可能对手统一地掩盖了Lublinear的遗憾,我们保证对手有线性遗憾。为了我们的知识,这项工作是第一个在多智能经纪人学习中提供遗憾和非剥削性的保证。
translated by 谷歌翻译
经验和实验证据表明,人工智能算法学会收取超竞争价格。在本文中,我们开发了一种理论模型来通过自适应学习算法研究勾结。使用流体近似技术,我们表征了一般游戏的连续时间学习成果,并确定勾结的主要驱动力:协调偏见。在一个简单的主导策略游戏中,我们展示了算法估计之间的相关性如何导致持续的偏见,从长远来看持续犯罪行动。我们证明,使用反事实收益来告知其更新的算法避免了这种偏见并融合了主导策略。我们设计了一种带有反馈的机制:设计师揭示了事前信息以帮助反事实计算。我们表明,这种机制实现了社会最佳。最后,我们将我们的框架应用于文献中研究和拍卖的两个模拟,并分析结果合理化。
translated by 谷歌翻译
钢筋学习(RL)最近在许多人工智能应用中取得了巨大成功。 RL的许多最前沿应用涉及多个代理,例如,下棋和去游戏,自主驾驶和机器人。不幸的是,古典RL构建的框架不适合多代理学习,因为它假设代理的环境是静止的,并且没有考虑到其他代理的适应性。在本文中,我们介绍了动态环境中的多代理学习的随机游戏模型。我们专注于随机游戏的简单和独立学习动态的发展:每个代理商都是近视,并为其他代理商的战略选择最佳响应类型的行动,而不与对手进行任何协调。为随机游戏开发收敛最佳响应类型独立学习动态有限的进展。我们展示了我们最近提出的简单和独立的学习动态,可保证零汇率随机游戏的融合,以及对此设置中的动态多代理学习的其他同时算法的审查。一路上,我们还重新审视了博弈论和RL文学的一些古典结果,以适应我们独立的学习动态的概念贡献,以及我们分析的数学诺克特。我们希望这篇审查文件成为在博弈论中研究独立和自然学习动态的重新训练的推动力,对于具有动态环境的更具挑战性的环境。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
我们提供了第一个子线性空间和次线性遗憾算法,用于在线学习,并通过专家建议(反对遗忘的对手),解决了Srinivas,Woodruff,Xu和Zhou最近提出的一个公开问题(STOC 2022)。我们还通过证明对自适应对手的任何子线性遗憾算法的线性记忆下限,证明了遗忘和(强)适应对手之间的分离。我们的算法基于一个新颖的泳池选择程序,该程序绕过了传统的在线学习领导者选择的智慧,以及将任何弱的子线性遗憾$ O(t)$算法转变为$ t^{1- \ alpha} $遗憾算法,这可能具有独立的利益。我们的下边界利用了零和游戏中无需重新学习和平衡计算的连接,从而证明了与自适应对手相对于自适应对手的强大界限。
translated by 谷歌翻译
最近,Daskalakis,Fisselson和Golowich(DFG)(Neurips`21)表明,如果所有代理在多人普通和正常形式游戏中采用乐观的乘法权重更新(OMWU),每个玩家的外部遗憾是$ o(\ textrm {polylog}(t))$ the游戏的$重复。我们从外部遗憾扩展到内部遗憾并交换后悔,从而建立了以$ \ tilde {o}的速率收敛到近似相关均衡的近似相关均衡(t ^ { - 1})$。由于陈和彭(神经潜行群岛20),这实质上提高了以陈和彭(NEURIPS20)的相关均衡的相关均衡率,并且在无遗憾的框架内是最佳的 - 以$ $ $ to to polylogarithmic因素。为了获得这些结果,我们开发了用于建立涉及固定点操作的学习动态的高阶平滑的新技术。具体而言,我们确定STOLTZ和LUGOSI(Mach Learn`05)的无内部遗憾学习动态在组合空间上的无外部后悔动态等效地模拟。这使我们可以在指数大小的集合上交易多项式大型马尔可夫链的计算,用于在指数大小的集合上的(更良好的良好)的线性变换,使我们能够利用类似的技术作为DGF到接近最佳地结合内心遗憾。此外,我们建立了$ O(\ textrm {polylog}(t))$ no-swap-recreet遗憾的blum和mansour(bm)的经典算法(JMLR`07)。我们这样做是通过基于Cauchy积分的技术来介绍DFG的更有限的组合争论。除了对BM的近乎最优遗憾保证的阐明外,我们的论点还提供了进入各种方式的洞察,其中可以在分析更多涉及的学习算法中延长和利用DFG的技术。
translated by 谷歌翻译
当这些代理商还具有适应我们自己的行为的能力时,学会与其他代理商合作是具有挑战性的。在合作环境中学习的实用和理论方法通常假定其他代理人的行为是静止的,或者对其他代理人的学习过程做出了非常具体的假设。这项工作的目的是了解我们是否可以在没有这种限制性假设的情况下可靠地学会与其他代理商合作,而这些假设不太可能在现实世界应用中保留。我们的主要贡献是一组不可能的结果,这表明没有学习算法可以可靠地学习与重复的矩阵游戏中所有可能的自适应伙伴合作,即使该合作伙伴可以通过某种固定策略合作。在这些结果的激励下,我们讨论了潜在的替代假设,这些假设捕捉了自适应伴侣只能理性地适应我们的行为的想法。
translated by 谷歌翻译
我们考虑带有背包的土匪(从此以后,BWK),这是一种在供应/预算限制下的多臂土匪的通用模型。特别是,强盗算法需要解决一个众所周知的背包问题:找到最佳的物品包装到有限尺寸的背包中。 BWK问题是众多激励示例的普遍概括,范围从动态定价到重复拍卖,再到动态AD分配,再到网络路由和调度。尽管BWK的先前工作集中在随机版本上,但我们开创了可以在对手身上选择结果的另一个极端。与随机版本和“经典”对抗土匪相比,这是一个更加困难的问题,因为遗憾的最小化不再可行。相反,目的是最大程度地减少竞争比率:基准奖励与算法奖励的比率。我们设计了一种具有竞争比O(log t)的算法,相对于动作的最佳固定分布,其中T是时间范围;我们还证明了一个匹配的下限。关键的概念贡献是对问题的随机版本的新观点。我们为随机版本提出了一种新的算法,该算法是基于重复游戏中遗憾最小化的框架,并且与先前的工作相比,它具有更简单的分析。然后,我们为对抗版本分析此算法,并将其用作求解后者的子例程。
translated by 谷歌翻译
在本文中,我们解决了普通游戏中无遗憾的学习问题。具体而言,我们提供了一种简单实用的算法,实现了固定的阶梯大小的恒定遗憾。随着阶梯大小的增加,我们的算法的累积遗憾可被线性降低。我们的调查结果离开了现行范式,即消失的阶梯尺寸是迄今为止所有最先进的方法的低遗憾的先决条件。通过定义我们称之为Clairvoyant乘法权重更新(CMWU)的小说算法,从此范例转移到此范式。 CMWU是配备有精神模型的乘法权重更新(MWU),其在下一个时期中的系统状态有关系统的状态。每个代理记录其混合策略,即它对在下一期间在下一期间播放的信念,在此共享心理模型中,在此共享心理模型中使用MWU内部更新而没有对实际行为的任何改变,直到它平衡,从而标记其与第二天的真实结果一致。然后,只有那个代理在现实世界中采取行动,有效地在第二天的系统状态的“全面知识”,即它们是克莱师。CMWU有效充当MWU一天展望,实现有界遗憾。在技术水平,我们建立了任何选择的阶梯大小的自我一致的心理模型,并在其唯一性和线性时间计算的阶梯大小上提供界限收缩映射参数。我们的论点超越正常的游戏,几乎没有努力。
translated by 谷歌翻译