我们研究了在几个课程之一的未知会员的对手对对手的反复游戏中保证对反对者的低遗憾的问题。我们添加了我们的算法是非利用的约束,因为对手缺乏使用算法的激励,我们无法实现超过一些“公平”价值的奖励。我们的解决方案是一组专家算法(LAFF),该算法(LAFF)在一组子算法内搜索每个对手课程的最佳算法,并在检测对手剥削证据时使用惩罚政策。通过依赖对手课的基准,我们展示了除了剥削者之外的可能对手统一地掩盖了Lublinear的遗憾,我们保证对手有线性遗憾。为了我们的知识,这项工作是第一个在多智能经纪人学习中提供遗憾和非剥削性的保证。
translated by 谷歌翻译
经济学和政策等现实世界应用程序往往涉及解决多智能运动游戏与两个独特的特点:(1)代理人本质上是不对称的,并分成领导和追随者; (2)代理商有不同的奖励功能,因此游戏是普通的。该领域的大多数现有结果侧重于对称解决方案概念(例如纳什均衡)或零和游戏。它仍然开放了如何学习Stackelberg均衡 - 从嘈杂的样本有效地纳入均衡的不对称模拟 - 纳入均衡。本文启动了对Birtit反馈设置中Stackelberg均衡的样本高效学习的理论研究,我们只观察奖励的噪音。我们考虑三个代表双人普通和游戏:强盗游戏,强盗加固学习(Bandit-RL)游戏和线性匪徒游戏。在所有这些游戏中,我们使用有义的许多噪声样本来确定Stackelberg均衡和其估计版本的确切值之间的基本差距,无论算法如何,都无法封闭信息。然后,我们在对上面识别的差距最佳的基础上的数据高效学习的样本高效学习的敏锐积极结果,在依赖于依赖性的差距,误差容限和动作空间的大小,匹配下限。总体而言,我们的结果在嘈杂的强盗反馈下学习Stackelberg均衡的独特挑战,我们希望能够在未来的研究中阐明这一主题。
translated by 谷歌翻译
零和游戏中的理想策略不仅应授予玩家的平均奖励,不少于NASH均衡的价值,而且还应在次优时利用(自适应)对手。尽管马尔可夫游戏中的大多数现有作品都专注于以前的目标,但我们是否可以同时实现这两个目标仍然开放。为了解决这个问题,这项工作在马尔可夫游戏中与对抗对手进行了无重组学习,当时与事后最佳的固定政策竞争时。沿着这个方向,我们提出了一组新的正面和负面结果:当每个情节结束时对手的政策被揭示时,我们提出了实现$ \ sqrt {k} $的新的有效算法 - 遗憾的是(遗憾的是) 1)基线政策类别很小或(2)对手的政策类别很小。当两种条件不正确时,这与指数下限相辅相成。当未揭示对手的政策时,即使在最有利的情况下,当两者都是正确的情况下,我们也会证明统计硬度结果。我们的硬度结果比仅涉及计算硬度或需要进一步限制算法的现有硬度结果要强得多。
translated by 谷歌翻译
We consider a multi-agent episodic MDP setup where an agent (leader) takes action at each step of the episode followed by another agent (follower). The state evolution and rewards depend on the joint action pair of the leader and the follower. Such type of interactions can find applications in many domains such as smart grids, mechanism design, security, and policymaking. We are interested in how to learn policies for both the players with provable performance guarantee under a bandit feedback setting. We focus on a setup where both the leader and followers are {\em non-myopic}, i.e., they both seek to maximize their rewards over the entire episode and consider a linear MDP which can model continuous state-space which is very common in many RL applications. We propose a {\em model-free} RL algorithm and show that $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ regret bounds can be achieved for both the leader and the follower, where $d$ is the dimension of the feature mapping, $H$ is the length of the episode, and $T$ is the total number of steps under the bandit feedback information setup. Thus, our result holds even when the number of states becomes infinite. The algorithm relies on {\em novel} adaptation of the LSVI-UCB algorithm. Specifically, we replace the standard greedy policy (as the best response) with the soft-max policy for both the leader and the follower. This turns out to be key in establishing uniform concentration bound for the value functions. To the best of our knowledge, this is the first sub-linear regret bound guarantee for the Markov games with non-myopic followers with function approximation.
translated by 谷歌翻译
当这些代理商还具有适应我们自己的行为的能力时,学会与其他代理商合作是具有挑战性的。在合作环境中学习的实用和理论方法通常假定其他代理人的行为是静止的,或者对其他代理人的学习过程做出了非常具体的假设。这项工作的目的是了解我们是否可以在没有这种限制性假设的情况下可靠地学会与其他代理商合作,而这些假设不太可能在现实世界应用中保留。我们的主要贡献是一组不可能的结果,这表明没有学习算法可以可靠地学习与重复的矩阵游戏中所有可能的自适应伙伴合作,即使该合作伙伴可以通过某种固定策略合作。在这些结果的激励下,我们讨论了潜在的替代假设,这些假设捕捉了自适应伴侣只能理性地适应我们的行为的想法。
translated by 谷歌翻译
在多机构强化学习(MARL)中,独立学习者是那些不观察系统中其他代理商的行为的学习者。由于信息的权力下放,设计独立的学习者将发挥均匀的态度是有挑战性的。本文研究了使用满足动态来指导独立学习者在随机游戏中近似平衡的可行性。对于$ \ epsilon \ geq 0 $,$ \ epsilon $ -SATISFICING策略更新规则是任何规则,指示代理在$ \ epsilon $ best-best-reversponding to to to the其余参与者的策略时不要更改其策略; $ \ epsilon $ -SATISFIFICING路径定义为当每个代理使用某些$ \ epsilon $ -SATISFIFICING策略更新规则来选择其下一个策略时,获得的联合策略序列。我们建立了关于$ \ epsilon $ - 偏离型路径的结构性结果,这些路径是$ \ epsilon $ equilibium in Symmetric $ n $ - 玩家游戏和带有两个玩家的一般随机游戏。然后,我们为$ n $玩家对称游戏提出了一种独立的学习算法,并为自我玩法的$ \ epsilon $ equilibrium提供了高可能性保证。此保证仅使用对称性,利用$ \ epsilon $ satisficing路径的先前未开发的结构。
translated by 谷歌翻译
当今许多大型系统的设计,从交通路由环境到智能电网,都依赖游戏理论平衡概念。但是,随着$ n $玩家游戏的大小通常会随着$ n $而成倍增长,标准游戏理论分析实际上是不可行的。最近的方法通过考虑平均场游戏,匿名$ n $玩家游戏的近似值,在这种限制中,玩家的数量是无限的,而人口的状态分布,而不是每个单独的球员的状态,是兴趣。然而,迄今为止研究最多的平均场平衡的平均场nash平衡的实际可计算性通常取决于有益的非一般结构特性,例如单调性或收缩性能,这是已知的算法收敛所必需的。在这项工作中,我们通过开发均值相关和与粗相关的平衡的概念来研究平均场比赛的替代途径。我们证明,可以使用三种经典算法在\ emph {ash All Games}中有效地学习它们,而无需对游戏结构进行任何其他假设。此外,我们在文献中已经建立了对应关系,从而获得了平均场 - $ n $玩家过渡的最佳范围,并经验证明了这些算法在简单游戏中的收敛性。
translated by 谷歌翻译
我们与指定为领导者的球员之一和其他球员读为追随者的球员学习多人一般汇总马尔可夫游戏。特别是,我们专注于追随者是近视的游戏,即,他们的目标是最大限度地提高他们的瞬间奖励。对于这样的游戏,我们的目标是找到一个Stackelberg-Nash均衡(SNE),这是一个策略对$(\ pi ^ *,\ nu ^ *)$,这样(i)$ \ pi ^ * $是追随者始终发挥最佳回应的领导者的最佳政策,(ii)$ \ nu ^ * $是追随者的最佳反应政策,这是由$ \ pi ^ *引起的追随者游戏的纳什均衡$。我们开发了用于在线和离线设置中的SNE解决SNE的采样高效的强化学习(RL)算法。我们的算法是最小二乘值迭代的乐观和悲观的变体,并且它们很容易能够在大状态空间的设置中结合函数近似工具。此外,对于线性函数近似的情况,我们证明我们的算法分别在线和离线设置下实现了Sublinear遗憾和次优。据我们所知,我们建立了第一种可用于解决近代Markov游戏的SNES的第一款可透明的RL算法。
translated by 谷歌翻译
最大化马尔可夫和固定的累积奖励函数,即在国家行动对和时间独立于时间上定义,足以在马尔可夫决策过程(MDP)中捕获多种目标。但是,并非所有目标都可以以这种方式捕获。在本文中,我们研究了凸MDP,其中目标表示为固定分布的凸功能,并表明它们不能使用固定奖励函数进行配制。凸MDP将标准加强学习(RL)问题提出概括为一个更大的框架,其中包括许多受监督和无监督的RL问题,例如学徒学习,约束MDP和所谓的“纯探索”。我们的方法是使用Fenchel二重性将凸MDP问题重新将凸MDP问题重新制定为涉及政策和成本(负奖励)的最小游戏。我们提出了一个用于解决此问题的元偏金属,并表明它统一了文献中许多现有的算法。
translated by 谷歌翻译
We study the problem of training a principal in a multi-agent general-sum game using reinforcement learning (RL). Learning a robust principal policy requires anticipating the worst possible strategic responses of other agents, which is generally NP-hard. However, we show that no-regret dynamics can identify these worst-case responses in poly-time in smooth games. We propose a framework that uses this policy evaluation method for efficiently learning a robust principal policy using RL. This framework can be extended to provide robustness to boundedly rational agents too. Our motivating application is automated mechanism design: we empirically demonstrate our framework learns robust mechanisms in both matrix games and complex spatiotemporal games. In particular, we learn a dynamic tax policy that improves the welfare of a simulated trade-and-barter economy by 15%, even when facing previously unseen boundedly rational RL taxpayers.
translated by 谷歌翻译
我们考虑了有多个具有不同奖励功能的利益相关者的情节强化学习问题。我们的目标是输出有关不同奖励功能在社会上公平的政策。先前的工作提出了不同的目标,即公平政策必须优化,包括最低福利和广义的基尼福利。我们首先对问题进行公理视图,并提出四个公理,任何这样的公平目标都必须满足。我们表明,纳什社会福利是一个独特的目标,它独特地满足了所有四个目标,而先前的目标无法满足所有四个公理。然后,我们考虑了基础模型,即马尔可夫决策过程未知的问题的学习版本。我们考虑到最大程度地降低对公平政策最大化的遗憾的问题,从而最大化三个不同的公平目标 - 最低限度的福利,广义基尼福利和纳什社会福利。基于乐观的计划,我们提出了一种通用的学习算法,并在三种不同的政策方面得出了遗憾。为了纳什社会福利的目的,我们还遗憾地得出了一个遗憾的遗憾,它以$ n $(代理的数量)成倍增长。最后,我们表明,为了最低限度福利的目的,对于较弱的遗憾概念,人们可以将遗憾提高到$ o(h)$。
translated by 谷歌翻译
我们考虑战略设置,其中几个用户在重复的在线互动中聘用,辅助最小化的代理商代表他们反复发挥“游戏”。我们研究了代理人的重复游戏的动态和平均结果,并将其视为诱导用户之间的元游戏。我们的主要焦点是用户可以在此元游戏中从“操纵”他们自己的代理商中可以受益于他们自己的代理商。我们正式定义了普通游戏的这种“用户代理元荟萃游戏”模型,讨论了自动化代理动态的不同概念下的属性,并分析了2x2游戏中用户的均衡,其中动态收敛到a单均衡。
translated by 谷歌翻译
在线强化学习(RL)中的挑战之一是代理人需要促进对环境的探索和对样品的利用来优化其行为。无论我们是否优化遗憾,采样复杂性,状态空间覆盖范围或模型估计,我们都需要攻击不同的勘探开发权衡。在本文中,我们建议在分离方法组成的探索 - 剥削问题:1)“客观特定”算法(自适应)规定哪些样本以收集到哪些状态,似乎它可以访问a生成模型(即环境的模拟器); 2)负责尽可能快地生成规定样品的“客观无关的”样品收集勘探策略。建立最近在随机最短路径问题中进行探索的方法,我们首先提供一种算法,它给出了每个状态动作对所需的样本$ B(S,a)$的样本数量,需要$ \ tilde {o} (bd + d ^ {3/2} s ^ 2 a)收集$ b = \ sum_ {s,a} b(s,a)$所需样本的$时间步骤,以$ s $各国,$ a $行动和直径$ d $。然后我们展示了这种通用探索算法如何与“客观特定的”策略配对,这些策略规定了解决各种设置的样本要求 - 例如,模型估计,稀疏奖励发现,无需无成本勘探沟通MDP - 我们获得改进或新颖的样本复杂性保证。
translated by 谷歌翻译
随机游戏的学习可以说是多功能钢筋学习(MARL)中最标准和最基本的环境。在本文中,我们考虑在非渐近制度的随机游戏中分散的Marl。特别是,我们在大量的一般总和随机游戏(SGS)中建立了完全分散的Q学习算法的有限样本复杂性 - 弱循环SGS,包括对所有代理商的普通合作MARL设置具有相同的奖励(马尔可夫团队问题是一个特例。我们专注于实用的同时具有挑战性地设置完全分散的Marl,既不奖励也没有其他药剂的作用,每个试剂都可以观察到。事实上,每个特工都完全忘记了其他决策者的存在。表格和线性函数近似情况都已考虑。在表格设置中,我们分析了分散的Q学习算法的样本复杂性,以收敛到马尔可夫完美均衡(NASH均衡)。利用线性函数近似,结果用于收敛到线性近似平衡 - 我们提出的均衡的新概念 - 这描述了每个代理的策略是线性空间内的最佳回复(到其他代理)。还提供了数值实验,用于展示结果。
translated by 谷歌翻译
我们考虑非平稳马尔可夫决策过程中的无模型增强学习(RL)。只要其累积变化不超过某些变化预算,奖励功能和国家过渡功能都可以随时间随时间变化。我们提出了重新启动的Q学习,以上置信度范围(RestartQ-UCB),这是第一个用于非平稳RL的无模型算法,并表明它在动态遗憾方面优于现有的解决方案。具体而言,带有freedman型奖励项的restartq-ucb实现了$ \ widetilde {o}(s^{\ frac {1} {3}} {\ frac {\ frac {1} {1} {3}} {3}} {3}} {3}} {3}} {3}} {3}} {3}} {\ delta ^{\ frac {1} {3}} h t^{\ frac {2} {3}}} $,其中$ s $和$ a $分别是$ \ delta> 0 $的状态和动作的数字是变化预算,$ h $是每集的时间步数,而$ t $是时间步长的总数。我们进一步提出了一种名为Double-Restart Q-UCB的无参数算法,该算法不需要事先了解变化预算。我们证明我们的算法是\ emph {几乎是最佳},通过建立$ \ omega的信息理论下限(s^{\ frac {1} {1} {3}}} a^{\ frac {1} {1} {3}}}}}} \ delta^{\ frac {1} {3}} h^{\ frac {2} {3}}}} t^{\ frac {2} {3}}} $,是非稳态RL中的第一个下下限。数值实验可以根据累积奖励和计算效率来验证RISTARTQ-UCB的优势。我们在相关产品的多代理RL和库存控制的示例中证明了我们的结果的力量。
translated by 谷歌翻译
最近有很多不可能的结果表明,在与对抗对手的马尔可夫游戏中最小化的遗憾在统计学上和计算上是棘手的。然而,这些结果都没有排除在所有各方采用相同学习程序的假设下,遗憾最小化的可能性。在这项工作中,我们介绍了第一种(据我们所知)在通用马尔可夫游戏中学习的算法,该算法在所有代理商执行时提供了sublinear后悔保证。我们获得的边界是为了置换遗憾,因此,在此过程中,意味着融合了相关的平衡。我们的算法是分散的,计算上有效的,并且不需要代理之间的任何通信。我们的主要观察结果是,在马尔可夫游戏中通过策略优化的在线学习基本上减少了一种加权遗憾的最小化形式,而未知权重由代理商的策略顺序的路径长度确定。因此,控制路径长度会导致加权的遗憾目标,以提供足够的适应性算法提供统一的后悔保证。
translated by 谷歌翻译
Imperfect information games (IIG) are games in which each player only partially observes the current game state. We study how to learn $\epsilon$-optimal strategies in a zero-sum IIG through self-play with trajectory feedback. We give a problem-independent lower bound $\mathcal{O}(H(A_{\mathcal{X}}+B_{\mathcal{Y}})/\epsilon^2)$ on the required number of realizations to learn these strategies with high probability, where $H$ is the length of the game, $A_{\mathcal{X}}$ and $B_{\mathcal{Y}}$ are the total number of actions for the two players. We also propose two Follow the Regularize leader (FTRL) algorithms for this setting: Balanced-FTRL which matches this lower bound, but requires the knowledge of the information set structure beforehand to define the regularization; and Adaptive-FTRL which needs $\mathcal{O}(H^2(A_{\mathcal{X}}+B_{\mathcal{Y}})/\epsilon^2)$ plays without this requirement by progressively adapting the regularization to the observations.
translated by 谷歌翻译
由于信息不对称,多智能经纪增强学习(Marl)问题是挑战。为了克服这一挑战,现有方法通常需要代理商之间的高度协调或沟通。我们考虑具有在应用中产生的分层信息结构的两个代理多武装匪徒(MAB)和MARKOV决策过程(MDP),我们利用不需要协调或通信的更简单和更高效的算法。在结构中,在每个步骤中,“领导者”首先选择她的行动,然后“追随者”在观察领导者的行动后,“追随者”决定他的行动。这两个代理观察了相同的奖励(以及MDP设置中的相同状态转换),这取决于其联合行动。对于强盗设置,我们提出了一种分层匪盗算法,实现了$ \ widetilde {\ mathcal {o}}(\ sqrt {abt})$和近最佳差距依赖的近乎最佳的差距遗憾$ \ mathcal {o}(\ log(t))$,其中$ a $和$ b $分别是领导者和追随者的行动数,$ t $是步数。我们进一步延伸到多个追随者的情况,并且具有深层层次结构的情况,在那里我们都获得了近乎最佳的遗憾范围。对于MDP设置,我们获得$ \ widetilde {\ mathcal {o}}(\ sqrt {h ^ 7s ^ 2abt})$后悔,其中$ h $是每集的步骤数,$ s $是数量各国,$ T $是剧集的数量。这与$ a,b $和$ t $的现有下限匹配。
translated by 谷歌翻译
本文涉及两人零和马尔可夫游戏 - 可以说是多代理增强学习中最基本的设置 - 目的是学习纳什平衡(NE)的样本 - 优越。所有先前的结果至少都有两个障碍中的至少一个:多种试剂的诅咒和长层的障碍,无论使用采样方案如何。假设访问灵活的采样机制:生成模型,我们朝着解决此问题迈出了一步。专注于非平稳的有限 - 霍森马尔可夫游戏,我们开发了一种学习算法$ \ mathsf {nash} \ text { - } \ mathsf {q} \ text { - } \ text { - } \ mathsf {ftrl} $ and deflavery and Adaptive采样方案对抗性学习中的乐观原则(尤其是跟随规范化领导者(FTRL)方法),具有精致的奖励术语设计,可确保在FTRL动力学下进行某些可分解性。我们的算法使用$$ \ widetilde {o} \ bigg(\ frac {h^4 s(a+b)} {\ varepsilon^2} \ bigg)$ bigg)$ samples $ \ varepsilon $ -Approximate Markov ne策略其中$ s $是状态的数量,$ h $是地平线,而$ a $ a $ a $ a $ a $(resp。〜 $ b $)表示max-player的动作数(分别〜min-player)。从最小的意义上讲,这几乎无法得到解决。在此过程中,我们得出了一个精致的遗憾,以赋予FTRL的遗憾,从而明确说明了差异数量的作用,这可能具有独立的利益。
translated by 谷歌翻译
尽管固定环境中的单一机构政策优化最近在增强学习社区中引起了很多研究的关注,但是当在潜在竞争性的环境中有多个代理商在玩耍时,从理论上讲,少得多。我们通过提出和分析具有结构化但未知过渡的零和Markov游戏的新的虚拟游戏策略优化算法来向前迈进。我们考虑两类的过渡结构:分类的独立过渡和单个控制器过渡。对于这两种情况,我们都证明了紧密的$ \ widetilde {\ Mathcal {o}}(\ sqrt {k})$遗憾的范围在$ k $ eviepodes之后,在两种代理竞争的游戏场景中。每个代理人的遗憾是针对潜在的对抗对手的衡量,他们在观察完整的政策序列后可以在事后选择一个最佳政策。我们的算法在非平稳环境中同时进行政策优化的范围下,具有上置信度结合(UCB)的乐观和虚拟游戏的结合。当两个玩家都采用所提出的算法时,他们的总体最优差距为$ \ widetilde {\ Mathcal {o}}(\ sqrt {k})$。
translated by 谷歌翻译