自我监督的学习表现出了巨大的希望,因为它可以在没有完全采样的数据的情况下训练深度学习MRI重建方法。当前用于物理学指导的重建网络的自我监督的学习方法分裂获得了两个不相交的数据,其中一种用于独立网络中的数据一致性(DC),另一个用于定义培训损失。在这项研究中,我们提出了一种改进的自我监督学习策略,该策略更有效地使用获得的数据来训练物理学指导的重建网络,而无需数据完全采样的数据。提出的通过数据下采样(SSDU)对所提出的多掩码自我监督的学习(SSDU)应用于获得的测量结果,将其分为每个训练样本的多对不相交集,而使用这些对DC单位和DC单位和其中一对,其他用于定义损失的,从而更有效地使用了不足采样的数据。多面罩SSDU应用于完全采样的3D膝盖上,并前瞻性地采样3D脑MRI数据集,用于各种加速度和图案,并与CG-Sense和单膜ssdu dl-MRI以及受监督的DL-MRI以及当时的DL-MRI进行比较。提供了完全采样的数据。膝盖MRI的结果表明,提出的多面罩SSDU胜过SSDU,并与受监督的DL-MRI紧密相关。一项临床读者的研究进一步将多面罩SSDU在SNR和混叠伪影方面高于监督的DL-MRI。大脑MRI的结果表明,与SSDU相比,多面罩SSDU可以达到更好的重建质量。读者的研究表明,与单罩SSDU相比,r = 8时的多面膜SSDU显着改善了重建,r = 8,以及r = 2时的CG-Sense。
translated by 谷歌翻译
物理驱动的深度学习方法已成为计算磁共振成像(MRI)问题的强大工具,将重建性能推向新限制。本文概述了将物理信息纳入基于学习的MRI重建中的最新发展。我们考虑了用于计算MRI的线性和非线性正向模型的逆问题,并回顾了解决这些方法的经典方法。然后,我们专注于物理驱动的深度学习方法,涵盖了物理驱动的损失功能,插件方法,生成模型和展开的网络。我们重点介绍了特定于领域的挑战,例如神经网络的实现和复杂值的构建基块,以及具有线性和非线性正向模型的MRI转换应用。最后,我们讨论常见问题和开放挑战,并与物理驱动的学习与医学成像管道中的其他下游任务相结合时,与物理驱动的学习的重要性联系在一起。
translated by 谷歌翻译
深度学习方法已成为重建MR重建的最新采样的状态。特别是对于地面真理不可行或不可能的情况,要获取完全采样的数据,重建的自我监督的机器学习方法正在越来越多地使用。但是,在验证此类方法及其普遍性的验证中的潜在问题仍然没有得到充实的态度。在本文中,我们研究了自制算法验证未采样MR图像的重要方面:对前瞻性重建的定量评估,前瞻性和回顾性重建之间的潜在差异,常用的定量衡量标准的适用性和普遍性。研究了两种基于自我监督的denoising和先验的深层图像的自我监督算法。将这些方法与使用体内和幻影数据的最小二乘拟合以及压缩感测重建进行比较。它们的推广性通过前瞻性采样的数据与培训不同的数据进行了测试。我们表明,相对于回顾性重建/地面真理,前瞻性重建可能表现出严重的失真。此外,与感知度量相比,与像素定量指标的定量指标可能无法准确捕获感知质量的差异。此外,所有方法均显示出泛化的潜力。然而,与其他变化相比,概括性的影响更大。我们进一步表明,无参考图像指标与人类对图像质量的评级很好地对应,以研究概括性。最后,我们证明了经过调整的压缩感测重建和学习的DeNoising在所有数据上都相似地执行。
translated by 谷歌翻译
最近,由于高性能,深度学习方法已成为生物学图像重建和增强问题的主要研究前沿,以及其超快速推理时间。但是,由于获得监督学习的匹配参考数据的难度,对不需要配对的参考数据的无监督学习方法越来越兴趣。特别是,已成功用于各种生物成像应用的自我监督的学习和生成模型。在本文中,我们概述了在古典逆问题的背景下的连贯性观点,并讨论其对生物成像的应用,包括电子,荧光和去卷积显微镜,光学衍射断层扫描和功能性神经影像。
translated by 谷歌翻译
在过去的几年中,提出了多种基于深神经网络(DNN)的方法,以解决来自未取消采样的“ K-Space”(傅立叶域)数据的挑战性不足的反向问题。然而,反对采集过程中的变化和解剖学分布的不稳定性表明,与其经典的对应物相比,DNN体系结构对相关物理模型的概括不佳。较差的概括有效地排除了DNN适用于临床环境中不足采样的MRI重建。我们通过引入物理培养的DNN体系结构和培训方法来提高DNN方法的泛化MRI重建能力。除了模型体系结构中观察到的数据外,我们的体系结构还编码底面采样掩码,并采用适当的培训方法,该方法使用与各种无底采样掩码生成的数据一起鼓励模型概括了未散布的MRI重建问题。我们通过对公开可用的快速MRI数据集进行了广泛的实验,证明了我们的方法的附加价值。我们的物理提出的方法达到了增强的概括能力,这使得与获得的稳健性和解剖学分布的变化相比,尤其是在病理区域中,与香草DNN方法和DNN进行了显着提高,并在病理区域中进行了显着提高,并且受过培训的DNN训练,并接受了强烈的掩盖掩模的增强。接受训练的模型和代码以复制我们的实验,将在接受后用于研究目的。
translated by 谷歌翻译
Image reconstruction using deep learning algorithms offers improved reconstruction quality and lower reconstruction time than classical compressed sensing and model-based algorithms. Unfortunately, clean and fully sampled ground-truth data to train the deep networks is often unavailable in several applications, restricting the applicability of the above methods. We introduce a novel metric termed the ENsemble Stein's Unbiased Risk Estimate (ENSURE) framework, which can be used to train deep image reconstruction algorithms without fully sampled and noise-free images. The proposed framework is the generalization of the classical SURE and GSURE formulation to the setting where the images are sampled by different measurement operators, chosen randomly from a set. We evaluate the expectation of the GSURE loss functions over the sampling patterns to obtain the ENSURE loss function. We show that this loss is an unbiased estimate for the true mean-square error, which offers a better alternative to GSURE, which only offers an unbiased estimate for the projected error. Our experiments show that the networks trained with this loss function can offer reconstructions comparable to the supervised setting. While we demonstrate this framework in the context of MR image recovery, the ENSURE framework is generally applicable to arbitrary inverse problems.
translated by 谷歌翻译
可解释性和鲁棒性必须在临床应用中整合加速磁共振成像(MRI)重建的机器学习方法。这样做会允许快速高质量的解剖和病理学成像。数据一致性(DC)对于多模态数据的泛化至关重要,以及检测病理学的鲁棒性。这项工作提出了独立复发推理机(CIRIM)的级联,通过展开优化来评估DC,通过梯度下降,并通过设计的术语明确地明确。我们对CIRIM与其他展开的优化方法进行广泛的比较,是端到端变分网络(E2EVN)和轮辋,以及UNET和压缩感测(CS)。评估是分两个阶段完成的。首先,评估关于多次训练的MRI模型的学习,即用{t_1} $ - 加权和平凡对比,以及$ {t_2} $ - 加权膝盖数据。其次,在通过3D Flair MRI数据中重建依赖多发性硬化(MS)患者的3D Flair MRI数据来测试鲁棒性。结果表明,CIRIM在隐式强制执行DC时表现最佳,而E2EVN需要明确制定的DC。 CIRIM在重建临床MS数据时显示出最高病变对比度分辨率。与CS相比,性能提高了大约11%,而重建时间是二十次减少。
translated by 谷歌翻译
尽管几乎每种医学诊断和检查和检查应用中的广泛适应,但磁共振成像(MRI)仍然是慢的成像模态,其限制了其用于动态成像的用途。近年来,已利用平行成像(PI)和压缩传感(CS)加速MRI采集。在临床设置中,使用笛卡尔轨迹(例如直线采样)的扫描时间期间的k空间测量值是目前最常规的CS方法,然而,易于产生锯齿化重建。随着深度学习(DL)参与的出现,在加速MRI时,重建来自离心数据的忠实形象变得越来越有前途。回顾性地将数据采样掩模应用到k空间数据上是模拟真实临床环境中的k空间数据的加速获取的一种方式。在本文中,我们比较并提供审查对由训练的深神经网络输出的重建质量应用的效果进行审查。具有相同的超参数选择,我们训练并评估两个不同的反复推理机(轮辋),一个用于每种类型的重叠采样。我们的实验的定性和定量结果表明,具有径向子采样的数据培训的模型达到了更高的性能,并学会估计具有较高保真度的重建,为其他DL接近涉及径向辐射轮换。
translated by 谷歌翻译
目的:开发一种适用于具有非平滑相位变化的扩散加权(DW)图像的鲁棒部分傅里叶(PF)重建算法。方法:基于展开的近端分裂算法,导出了一种神经网络架构,其在经常复卷卷积实现的数据一致性操作和正则化之间交替。为了利用相关性,在考虑到置换方面,共同重建相同切片的多重重复。该算法在60名志愿者的DW肝脏数据上培训,并回顾性和预期的不同解剖和分辨率的次样本数据评估。结果:该方法能够在定量措施以及感知图像质量方面具有显着优异地优于追溯子采样数据的传统PF技术。在这种情况下,发现重复的联合重建以及特定类型的经常性网络展开展开是有益的重建质量。在预期的PF采样数据上,所提出的方法使得DW成像能够在不牺牲图像分辨率或引入额外的伪影的情况下进行DW成像。或者,它可以用来对抗具有更高分辨率的获取的TE增加。此外,可以向展示训练集中的解剖学和对比度显示普遍性的脑数据。结论:这项工作表明,即使在易于相位变化的解剖中的强力PF因子中,DW数据的强大PF重建也是可行的。由于所提出的方法不依赖于阶段的平滑度前沿,而是使用学习的经常性卷积,因此可以避免传统PF方法的伪像。
translated by 谷歌翻译
MRI扫描时间减少通常通过并行成像方法实现,通常基于逆图像空间(A.K.A.K空间)的均匀下采样和具有多个接收器线圈的同时信号接收。 Grappa方法通过跨越所有线圈的相邻获取信号的线性组合来插入缺失的k空间信号,并且可以通过k空间中的卷积来描述。最近,介绍了一种称为RAKI的更广泛的方法。 Raki是一种深入学习方法,将Grappa推广到附加的卷积层,在此期间应用非线性激活功能。这使得卷积神经网络能够实现缺失信号的非线性估计。与Grappa类似,Raki中的卷积核心使用从自动校准信号(ACS)获得的特定训练样本进行培训。 Raki与Grappa相比提供了卓越的重建质量,然而,由于其未知参数的数量增加,通常需要更多的AC。为了克服这一限制,本研究调查了训练数据对标准2D成像重建质量的影响,特别关注其金额和对比信息。此外,评估迭代k空间插值方法(araki),包括通过初始的格拉普重建训练数据增强,并通过迭代培训改进卷积滤波器。仅使用18,20和25个ACS线(8%),通过抑制在加速度因子R = 4和r = 5时发生的残余人工制品,并且与Grappa相比,通过定量质量指标加下划线,产生强烈的噪声抑制。与相约束的组合进一步改善。此外,在预扫描校准的情况下,伊拉克基显示比GRAPPA和RAKI更好的性能,并且在训练和缺乏采样的数据之间强烈不同的对比度。
translated by 谷歌翻译
用于医学图像重建的深度神经网络传统上使用高质量的地基图像作为训练目标训练。最近关于噪声的工作(N2N)已经示出了使用与具有地面真理的多个噪声测量的潜力。然而,现有的基于N2N的方法不适合于从经历非身份变形的物体的测量来学习。本文通过补偿对象变形来提出用于训练深层重建网络的变形补偿学习(DecoLearn)方法来解决此问题。DecoLearn的一个关键组件是一个深度登记模块,它与深度重建网络共同培训,没有任何地理监督。我们在模拟和实验收集的磁共振成像(MRI)数据上验证了甲板,并表明它显着提高了成像质量。
translated by 谷歌翻译
磁共振成像可以产生人体解剖和生理学的详细图像,可以帮助医生诊断和治疗肿瘤等病理。然而,MRI遭受了非常长的收购时间,使其易于患者运动伪影并限制其潜力以提供动态治疗。诸如并行成像和压缩感测的常规方法允许通过使用多个接收器线圈获取更少的MRI数据来改变MR图像来增加MRI采集速度。深度学习的最新进步与平行成像和压缩传感技术相结合,具有从高度加速的MRI数据产生高保真重建。在这项工作中,我们通过利用卷积复发网络的特性和展开算法来解决复发变分网络(RevurrentVarnet)的加速改变网络(RevurrentVarnet)的任务,提出了一种基于深入的深度学习的反问题解决者。 RevurrentVarnet由多个块组成,每个块都负责梯度下降优化算法的一个展开迭代,以解决逆问题。与传统方法相反,优化步骤在观察域($ k $ -space)而不是图像域中进行。每次反复出的Varnet块都会通过观察到的$ k $ -space,并由数据一致性术语和复制单元组成,它将作为输入的隐藏状态和前一个块的预测。我们所提出的方法实现了新的最新状态,定性和定量重建导致来自公共多通道脑数据集的5倍和10倍加速数据,优于以前的传统和基于深度学习的方法。我们将在公共存储库上释放所有型号代码和基线。
translated by 谷歌翻译
近年来,人们一直关注利用神经网络的统计建模能力来重建亚采样磁共振成像(MRI)数据。大多数提出的方法假设存在代表性的完全采样数据集并使用完全监督的培训。但是,对于许多应用程序,没有完全采样的培训数据,并且可能非常不切实际。因此,对仅使用亚采样数据进行培训的自我监督方法的开发和理解是非常可取的。这项工作将noisier2noise框架扩展到最初是为自我监管的denoising任务构建的,并将其密度子采样的MRI数据扩展到。我们使用Noisier2Noise框架来分析通过数据不采样(SSDU)来解释自我监督学习的表现,这是一种最近提出的方法,在实践中表现良好,但直到现在一直缺乏理论上的理由。我们还使用该框架来修改SSDU,我们发现它大大提高了其重建质量和鲁棒性,并在FastMRI Brain DataSet全面监督培训的1%内提供了测试集的于点。
translated by 谷歌翻译
最近的研究表明,在多个应用中,基于深度学习(DL)的MRI重建优于常规方法,例如并行成像和压缩传感(CS)。与通常使用预定的正规化线性表示形式实现的CS不同,DL固有地使用从大数据库中学到的非线性表示。另一个工作线使用转化学习(TL)通过从数据中学习线性表示来弥合这两种方法之间的差距。在这项工作中,我们将CS,TL和DL重建的想法结合在一起,以学习深层线性卷积转换,作为算法展开方法的一部分。使用端到端训练,我们的结果表明,所提出的技术可以将MR图像重建为与DL方法相当的水平,同时支持统一的不足采样模式,与常规CS方法不同。我们提出的方法依赖于凸稀疏的图像重建,并在推理时线性表示,这可能有益于表征鲁棒性,稳定性和概括性。
translated by 谷歌翻译
展开的神经网络最近实现了最先进的MRI重建。这些网络通过在基于物理的一致性和基于神经网络的正则化之间交替来展开迭代优化算法。但是,它们需要大型神经网络的几次迭代来处理高维成像任务,例如3D MRI。这限制了基于反向传播的传统训练算法,这是由于较大的记忆力和计算梯度和存储中间激活的计算要求。为了应对这一挑战,我们提出了加速MRI(GLEAM)重建的贪婪学习,这是一种高维成像设置的有效培训策略。 GLEAM将端到端网络拆分为脱钩的网络模块。每个模块都以贪婪的方式优化,并通过脱钩的梯度更新,从而减少了训练过程中的内存足迹。我们表明,可以在多个图形处理单元(GPU)上并行执行解耦梯度更新,以进一步减少训练时间。我们介绍了2D和3D数据集的实验,包括多线圈膝,大脑和动态心脏Cine MRI。我们观察到:i)闪闪发光的概括以及最先进的记忆效率基线,例如具有相同内存足迹的梯度检查点和可逆网络,但训练速度更快1.3倍; ii)对于相同的内存足迹,闪光在2D中产生1.1dB PSNR的增益,而3D在端到端基线中产生1.8 dB。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在改善医学成像工作流程(从图像获取和重建到疾病诊断和治疗)方面具有巨大潜力。特别是,近年来,用于医学图像重建的AI和ML算法(尤其是基于深度学习(DL)的方法)的使用,尤其是基于深度学习(DL)的方法已有显着增长。就重建质量和计算效率而言,DL技术已证明具有竞争力,并且通常比常规重建方法优越。基于DL的图像重建的使用还提供了有前途的机会,可以改变心脏图像的获取和重建方式。在本章中,我们将回顾用于心脏成像的基于DL的重建技术的最新进展,重点是心脏磁共振(CMR)图像重建。我们主要关注该应用程序的监督DL方法,包括图像后处理技术,模型驱动方法和基于K空间的方法。还讨论了DL对心脏图像重建的当前局限性,挑战和未来机会。
translated by 谷歌翻译
In this work, we propose a novel image reconstruction framework that directly learns a neural implicit representation in k-space for ECG-triggered non-Cartesian Cardiac Magnetic Resonance Imaging (CMR). While existing methods bin acquired data from neighboring time points to reconstruct one phase of the cardiac motion, our framework allows for a continuous, binning-free, and subject-specific k-space representation.We assign a unique coordinate that consists of time, coil index, and frequency domain location to each sampled k-space point. We then learn the subject-specific mapping from these unique coordinates to k-space intensities using a multi-layer perceptron with frequency domain regularization. During inference, we obtain a complete k-space for Cartesian coordinates and an arbitrary temporal resolution. A simple inverse Fourier transform recovers the image, eliminating the need for density compensation and costly non-uniform Fourier transforms for non-Cartesian data. This novel imaging framework was tested on 42 radially sampled datasets from 6 subjects. The proposed method outperforms other techniques qualitatively and quantitatively using data from four and one heartbeat(s) and 30 cardiac phases. Our results for one heartbeat reconstruction of 50 cardiac phases show improved artifact removal and spatio-temporal resolution, leveraging the potential for real-time CMR.
translated by 谷歌翻译
目的:并行成像通过用一系列接收器线圈获取其他灵敏度信息,从而加速了磁共振成像(MRI)数据,从而降低了相位编码步骤。压缩传感磁共振成像(CS-MRI)在医学成像领域中获得了普及,因为其数据要求较少,而不是平行成像。并行成像和压缩传感(CS)均通过最大程度地减少K空间中捕获的数据量来加快传统MRI获取。由于采集时间与样品的数量成反比,因此从缩短的K空间样品中的图像的反向形成会导致收购更快,但具有混乱的伪像。本文提出了一种新型的生成对抗网络(GAN),即雷德格尔(Recgan-gr)受到多模式损失的监督,以消除重建的图像。方法:与现有的GAN网络相反,我们提出的方法引入了一种新型的发电机网络,即与双域损耗函数集成的弹药网络,包括加权幅度和相位损耗函数以及基于平行成像的损失,即Grappa一致性损失。提出了K空间校正块,以使GAN网络自动化生成不必要的数据,从而使重建过程的收敛性更快。结果:全面的结果表明,拟议的Recgan-GR在基于GAN的方法中的PSNR有4 dB的改善,并且在文献中可用的传统最先进的CNN方法中有2 dB的改进。结论和意义:拟议的工作有助于显着改善低保留数据的图像质量,从而更快地获取了5倍或10倍。
translated by 谷歌翻译
The data consistency for the physical forward model is crucial in inverse problems, especially in MR imaging reconstruction. The standard way is to unroll an iterative algorithm into a neural network with a forward model embedded. The forward model always changes in clinical practice, so the learning component's entanglement with the forward model makes the reconstruction hard to generalize. The proposed method is more generalizable for different MR acquisition settings by separating the forward model from the deep learning component. The deep learning-based proximal gradient descent was proposed to create a learned regularization term independent of the forward model. We applied the one-time trained regularization term to different MR acquisition settings to validate the proposed method and compared the reconstruction with the commonly used $\ell_1$ regularization. We showed ~3 dB improvement in the peak signal to noise ratio, compared with conventional $\ell_1$ regularized reconstruction. We demonstrated the flexibility of the proposed method in choosing different undersampling patterns. We also evaluated the effect of parameter tuning for the deep learning regularization.
translated by 谷歌翻译
磁共振(MR)图像重建来自高度缺点$ K $ -space数据在加速MR成像(MRI)技术中至关重要。近年来,基于深度学习的方法在这项任务中表现出很大的潜力。本文提出了一种学习的MR图像重建半二次分割算法,并在展开的深度学习网络架构中实现算法。我们比较我们提出的方法对针对DC-CNN和LPDNET的公共心先生数据集的性能,我们的方法在定量结果和定性结果中表现出其他方法,具有更少的模型参数和更快的重建速度。最后,我们扩大了我们的模型,实现了卓越的重建质量,并且改善为1.76美元$ 276 $ 274美元的LPDNET以5美元\倍率为5美元的峰值信噪比。我们的方法的代码在https://github.com/hellopipu/hqs-net上公开使用。
translated by 谷歌翻译