展开的神经网络最近实现了最先进的MRI重建。这些网络通过在基于物理的一致性和基于神经网络的正则化之间交替来展开迭代优化算法。但是,它们需要大型神经网络的几次迭代来处理高维成像任务,例如3D MRI。这限制了基于反向传播的传统训练算法,这是由于较大的记忆力和计算梯度和存储中间激活的计算要求。为了应对这一挑战,我们提出了加速MRI(GLEAM)重建的贪婪学习,这是一种高维成像设置的有效培训策略。 GLEAM将端到端网络拆分为脱钩的网络模块。每个模块都以贪婪的方式优化,并通过脱钩的梯度更新,从而减少了训练过程中的内存足迹。我们表明,可以在多个图形处理单元(GPU)上并行执行解耦梯度更新,以进一步减少训练时间。我们介绍了2D和3D数据集的实验,包括多线圈膝,大脑和动态心脏Cine MRI。我们观察到:i)闪闪发光的概括以及最先进的记忆效率基线,例如具有相同内存足迹的梯度检查点和可逆网络,但训练速度更快1.3倍; ii)对于相同的内存足迹,闪光在2D中产生1.1dB PSNR的增益,而3D在端到端基线中产生1.8 dB。
translated by 谷歌翻译
Computational imaging has been revolutionized by compressed sensing algorithms, which offer guaranteed uniqueness, convergence, and stability properties. In recent years, model-based deep learning methods that combine imaging physics with learned regularization priors have been emerging as more powerful alternatives for image recovery. The main focus of this paper is to introduce a memory efficient model-based algorithm with similar theoretical guarantees as CS methods. The proposed iterative algorithm alternates between a gradient descent involving the score function and a conjugate gradient algorithm to encourage data consistency. The score function is modeled as a monotone convolutional neural network. Our analysis shows that the monotone constraint is necessary and sufficient to enforce the uniqueness of the fixed point in arbitrary inverse problems. In addition, it also guarantees the convergence to a fixed point, which is robust to input perturbations. Current algorithms including RED and MoDL are special cases of the proposed algorithm; the proposed theoretical tools enable the optimization of the framework for the deep equilibrium setting. The proposed deep equilibrium formulation is significantly more memory efficient than unrolled methods, which allows us to apply it to 3D or 2D+time problems that current unrolled algorithms cannot handle.
translated by 谷歌翻译
可解释性和鲁棒性必须在临床应用中整合加速磁共振成像(MRI)重建的机器学习方法。这样做会允许快速高质量的解剖和病理学成像。数据一致性(DC)对于多模态数据的泛化至关重要,以及检测病理学的鲁棒性。这项工作提出了独立复发推理机(CIRIM)的级联,通过展开优化来评估DC,通过梯度下降,并通过设计的术语明确地明确。我们对CIRIM与其他展开的优化方法进行广泛的比较,是端到端变分网络(E2EVN)和轮辋,以及UNET和压缩感测(CS)。评估是分两个阶段完成的。首先,评估关于多次训练的MRI模型的学习,即用{t_1} $ - 加权和平凡对比,以及$ {t_2} $ - 加权膝盖数据。其次,在通过3D Flair MRI数据中重建依赖多发性硬化(MS)患者的3D Flair MRI数据来测试鲁棒性。结果表明,CIRIM在隐式强制执行DC时表现最佳,而E2EVN需要明确制定的DC。 CIRIM在重建临床MS数据时显示出最高病变对比度分辨率。与CS相比,性能提高了大约11%,而重建时间是二十次减少。
translated by 谷歌翻译
物理驱动的深度学习方法已成为计算磁共振成像(MRI)问题的强大工具,将重建性能推向新限制。本文概述了将物理信息纳入基于学习的MRI重建中的最新发展。我们考虑了用于计算MRI的线性和非线性正向模型的逆问题,并回顾了解决这些方法的经典方法。然后,我们专注于物理驱动的深度学习方法,涵盖了物理驱动的损失功能,插件方法,生成模型和展开的网络。我们重点介绍了特定于领域的挑战,例如神经网络的实现和复杂值的构建基块,以及具有线性和非线性正向模型的MRI转换应用。最后,我们讨论常见问题和开放挑战,并与物理驱动的学习与医学成像管道中的其他下游任务相结合时,与物理驱动的学习的重要性联系在一起。
translated by 谷歌翻译
磁共振(MR)图像重建来自高度缺点$ K $ -space数据在加速MR成像(MRI)技术中至关重要。近年来,基于深度学习的方法在这项任务中表现出很大的潜力。本文提出了一种学习的MR图像重建半二次分割算法,并在展开的深度学习网络架构中实现算法。我们比较我们提出的方法对针对DC-CNN和LPDNET的公共心先生数据集的性能,我们的方法在定量结果和定性结果中表现出其他方法,具有更少的模型参数和更快的重建速度。最后,我们扩大了我们的模型,实现了卓越的重建质量,并且改善为1.76美元$ 276 $ 274美元的LPDNET以5美元\倍率为5美元的峰值信噪比。我们的方法的代码在https://github.com/hellopipu/hqs-net上公开使用。
translated by 谷歌翻译
自我监督的学习表现出了巨大的希望,因为它可以在没有完全采样的数据的情况下训练深度学习MRI重建方法。当前用于物理学指导的重建网络的自我监督的学习方法分裂获得了两个不相交的数据,其中一种用于独立网络中的数据一致性(DC),另一个用于定义培训损失。在这项研究中,我们提出了一种改进的自我监督学习策略,该策略更有效地使用获得的数据来训练物理学指导的重建网络,而无需数据完全采样的数据。提出的通过数据下采样(SSDU)对所提出的多掩码自我监督的学习(SSDU)应用于获得的测量结果,将其分为每个训练样本的多对不相交集,而使用这些对DC单位和DC单位和其中一对,其他用于定义损失的,从而更有效地使用了不足采样的数据。多面罩SSDU应用于完全采样的3D膝盖上,并前瞻性地采样3D脑MRI数据集,用于各种加速度和图案,并与CG-Sense和单膜ssdu dl-MRI以及受监督的DL-MRI以及当时的DL-MRI进行比较。提供了完全采样的数据。膝盖MRI的结果表明,提出的多面罩SSDU胜过SSDU,并与受监督的DL-MRI紧密相关。一项临床读者的研究进一步将多面罩SSDU在SNR和混叠伪影方面高于监督的DL-MRI。大脑MRI的结果表明,与SSDU相比,多面罩SSDU可以达到更好的重建质量。读者的研究表明,与单罩SSDU相比,r = 8时的多面膜SSDU显着改善了重建,r = 8,以及r = 2时的CG-Sense。
translated by 谷歌翻译
目的:开发基于深度学习的图像重建框架,以在MRI中可复制研究。方法:Bart Toolbox提供了丰富的校准和重建算法的实现,用于并行成像和压缩传感。在这项工作中,BART由非线性操作员框架扩展,该框架提供了自动差异以允许计算梯度。 BART的现有特定于MRI的操作员,例如非均匀的快速傅立叶变换,直接集成到该框架中,并与神经网络中使用的常见构件相辅相成。为了评估用于先进的基于深度学习的重建框架的使用,实现了两个最先进的展开的重建网络,即变异网络[1]和MODL [2]。结果:可以使用BART的基于BART的优化算法来构建和训练最新的深层图像重建网络。与基于TensorFlow的原始实现相比,BART实施在训练时间和重建质量方面具有相似的性能。结论:通过将非线性操作员和神经网络整合到BART中,我们为MRI中的深度学习重建提供了一个一般框架。
translated by 谷歌翻译
磁共振成像可以产生人体解剖和生理学的详细图像,可以帮助医生诊断和治疗肿瘤等病理。然而,MRI遭受了非常长的收购时间,使其易于患者运动伪影并限制其潜力以提供动态治疗。诸如并行成像和压缩感测的常规方法允许通过使用多个接收器线圈获取更少的MRI数据来改变MR图像来增加MRI采集速度。深度学习的最新进步与平行成像和压缩传感技术相结合,具有从高度加速的MRI数据产生高保真重建。在这项工作中,我们通过利用卷积复发网络的特性和展开算法来解决复发变分网络(RevurrentVarnet)的加速改变网络(RevurrentVarnet)的任务,提出了一种基于深入的深度学习的反问题解决者。 RevurrentVarnet由多个块组成,每个块都负责梯度下降优化算法的一个展开迭代,以解决逆问题。与传统方法相反,优化步骤在观察域($ k $ -space)而不是图像域中进行。每次反复出的Varnet块都会通过观察到的$ k $ -space,并由数据一致性术语和复制单元组成,它将作为输入的隐藏状态和前一个块的预测。我们所提出的方法实现了新的最新状态,定性和定量重建导致来自公共多通道脑数据集的5倍和10倍加速数据,优于以前的传统和基于深度学习的方法。我们将在公共存储库上释放所有型号代码和基线。
translated by 谷歌翻译
目的:通过密集连接的深度学习重建框架来改善加速的MRI重建。材料和方法:通过应用三个架构修改来修改级联的深度学习重建框架(基线模型):级联输入和输出之间的输入级级密集连接,改进的深度学习子网络和随后的SKIP连接之间的改进深度学习网络。进行了一项消融研究,其中在NYU FastMRI Neuro数据集上训练了五个模型配置,并在四倍和八倍的加速度上结合了端到端方案。通过比较其各自的结构相似性指数度量(SSIM),归一化平方误差(NMSE)和峰信号与噪声比(PSNR)来评估训练的模型。结果:提出的密集互连的残留级联网络(DIRCN)利用了所有三种建议的修改,分别为四倍和八倍加速度获得了8%和11%的SSIM提高。对于八倍的加速度,与基线模型相比,该模型的NMSE降低了23%。在一项消融研究中,单个体系结构的修饰都通过分别减少SSIM和NMSE的四倍加速度减少了SSIM和NMSE,这都促进了这一改进。结论:所提出的架构修改允许对已经存在的级联框架进行简单调整,以进一步改善所得的重建。
translated by 谷歌翻译
The data consistency for the physical forward model is crucial in inverse problems, especially in MR imaging reconstruction. The standard way is to unroll an iterative algorithm into a neural network with a forward model embedded. The forward model always changes in clinical practice, so the learning component's entanglement with the forward model makes the reconstruction hard to generalize. The proposed method is more generalizable for different MR acquisition settings by separating the forward model from the deep learning component. The deep learning-based proximal gradient descent was proposed to create a learned regularization term independent of the forward model. We applied the one-time trained regularization term to different MR acquisition settings to validate the proposed method and compared the reconstruction with the commonly used $\ell_1$ regularization. We showed ~3 dB improvement in the peak signal to noise ratio, compared with conventional $\ell_1$ regularized reconstruction. We demonstrated the flexibility of the proposed method in choosing different undersampling patterns. We also evaluated the effect of parameter tuning for the deep learning regularization.
translated by 谷歌翻译
CSGM框架(Bora-Jalal-Price-Dimakis'17)表明,深度生成前沿可能是解决逆问题的强大工具。但是,迄今为止,此框架仅在某些数据集(例如,人称和MNIST数字)上经验成功,并且已知在分布外样品上表现不佳。本文介绍了CSGM框架在临床MRI数据上的第一次成功应用。我们在FastMri DataSet上培训了大脑扫描之前的生成,并显示通过Langevin Dynamics的后验采样实现了高质量的重建。此外,我们的实验和理论表明,后部采样是对地面定语分布和测量过程的变化的强大。我们的代码和型号可用于:\ URL {https://github.com/utcsilab/csgm-mri-langevin}。
translated by 谷歌翻译
深度学习在加速磁共振成像(MRI)中表现出惊人的性能。最先进的深度学习重建采用强大的卷积神经网络,并且由于许多磁共振图像或其对应的k空间是2D的许多磁共振图像或其对应的k空间。在这项工作中,我们展示了一种探讨了1D卷积的新方法,使得深度网络更容易受到培训和广义。我们进一步将1D卷积集成到所提出的深网络中,命名为一维深度低级和稀疏网络(ODL),它展开了低级和稀疏重建模型的迭代过程。在体内膝盖和脑数据集中的广泛结果表明,所提出的ODLS非常适合培训受试者的情况,并提供比视觉和定量的最先进的方法改进的重建性能。此外,ODL还向不同的欠采样场景显示出良好的稳健性以及培训和测试数据之间的一些不匹配。总之,我们的工作表明,在快速MRI中,1D深度学习方案是内存高效且强大的。
translated by 谷歌翻译
Image reconstruction using deep learning algorithms offers improved reconstruction quality and lower reconstruction time than classical compressed sensing and model-based algorithms. Unfortunately, clean and fully sampled ground-truth data to train the deep networks is often unavailable in several applications, restricting the applicability of the above methods. We introduce a novel metric termed the ENsemble Stein's Unbiased Risk Estimate (ENSURE) framework, which can be used to train deep image reconstruction algorithms without fully sampled and noise-free images. The proposed framework is the generalization of the classical SURE and GSURE formulation to the setting where the images are sampled by different measurement operators, chosen randomly from a set. We evaluate the expectation of the GSURE loss functions over the sampling patterns to obtain the ENSURE loss function. We show that this loss is an unbiased estimate for the true mean-square error, which offers a better alternative to GSURE, which only offers an unbiased estimate for the projected error. Our experiments show that the networks trained with this loss function can offer reconstructions comparable to the supervised setting. While we demonstrate this framework in the context of MR image recovery, the ENSURE framework is generally applicable to arbitrary inverse problems.
translated by 谷歌翻译
通过获取有限的测量,近来有很多关于加速MRI中的数据采集过程的兴趣。部署经常复杂的重建算法以在这种设置中保持高图像质量。在这项工作中,我们提出了一种使用卷积神经网络,MNET的数据驱动采样器,为每个扫描对象提供自适应的特定于对象的采样模式。该网络针对每个物体观察非常有限的低频k空间数据,并且在一个达到高图像重建质量的情况下快速预测所需的下采样模式。我们提出了一个伴随的交流型训练框架,其掩模后向过程可以有效地生成用于采样器网络的训练标签并共同列举图像重建网络。 FastMri膝关节数据集上的实验结果证明了提出的学习欠采样网络在四倍和八倍加速下产生对象特定的掩模的能力,该八倍的加速度实现了优于几种现有方案的卓越图像重建性能。拟议的联合采样和重建学习框架的源代码可在https://github.com/zhishenhuang/mri获得。
translated by 谷歌翻译
基于深度学习的技术实现最新的技术会导致广泛的图像重建任务,例如压缩传感。这些方法几乎总是具有超参数,例如在优化损耗函数中平衡不同项的权重系数。典型的方法是训练模型,以通过某些经验或理论理由确定的超参数设置。因此,在推理时,模型只能计算与预定的超参数值相对应的重建。在这项工作中,我们提出了一种基于超网络的方法,称为HyperRecon,以训练不可知论到超参数设置的重建模型。在推理时,HyperRecon可以有效地产生不同的重建,每个重建都对应于不同的高参数值。在此框架中,用户有权根据自己的判断选择最有用的输出。我们使用两个大规模和公共可用的MRI数据集演示了压缩感测,超分辨率和去索任务的方法。我们的代码可在https://github.com/alanqrwang/hyhyperrecon上找到。
translated by 谷歌翻译
基于模型的深度学习(MODL)依赖展开的算法是作为图像恢复的强大工具。在这项工作中,我们介绍了一种新颖的单调运营商学习框架,以克服与当前展开框架相关的一些挑战,包括高记忆成本,缺乏对扰动的鲁布利的保证,以及低的可解释性。与使用有限数量迭代的展开架构不同,我们使用深度均衡(DEQ)框架来迭代算法来收敛,并使用Jacobian迭代评估卷积神经网络块的梯度。这种方法显着降低了内存需求,促进了ModL算法的扩展到高维问题。我们将CNN限制为单调运算符,允许我们引入具有保证收敛性的算法和鲁棒性保证。我们在平行MRI的背景下展示了所提出的方案的效用。
translated by 谷歌翻译
基于分数的扩散模型为使用数据分布的梯度建模图像提供了一种强大的方法。利用学到的分数函数为先验,在这里,我们引入了一种从条件分布中进行测量的方法,以便可以轻松地用于求解成像中的反问题,尤其是用于加速MRI。简而言之,我们通过denoising得分匹配来训练连续的时间依赖分数函数。然后,在推论阶段,我们在数值SDE求解器和数据一致性投影步骤之间进行迭代以实现重建。我们的模型仅需要用于训练的幅度图像,但能够重建复杂值数据,甚至扩展到并行成像。所提出的方法是不可知论到子采样模式,可以与任何采样方案一起使用。同样,由于其生成性质,我们的方法可以量化不确定性,这是标准回归设置不可能的。最重要的是,我们的方法还具有非常强大的性能,甚至击败了经过全面监督训练的模型。通过广泛的实验,我们在质量和实用性方面验证了我们方法的优势。
translated by 谷歌翻译
深度学习方法已成为重建MR重建的最新采样的状态。特别是对于地面真理不可行或不可能的情况,要获取完全采样的数据,重建的自我监督的机器学习方法正在越来越多地使用。但是,在验证此类方法及其普遍性的验证中的潜在问题仍然没有得到充实的态度。在本文中,我们研究了自制算法验证未采样MR图像的重要方面:对前瞻性重建的定量评估,前瞻性和回顾性重建之间的潜在差异,常用的定量衡量标准的适用性和普遍性。研究了两种基于自我监督的denoising和先验的深层图像的自我监督算法。将这些方法与使用体内和幻影数据的最小二乘拟合以及压缩感测重建进行比较。它们的推广性通过前瞻性采样的数据与培训不同的数据进行了测试。我们表明,相对于回顾性重建/地面真理,前瞻性重建可能表现出严重的失真。此外,与感知度量相比,与像素定量指标的定量指标可能无法准确捕获感知质量的差异。此外,所有方法均显示出泛化的潜力。然而,与其他变化相比,概括性的影响更大。我们进一步表明,无参考图像指标与人类对图像质量的评级很好地对应,以研究概括性。最后,我们证明了经过调整的压缩感测重建和学习的DeNoising在所有数据上都相似地执行。
translated by 谷歌翻译
最近,模型驱动的深度学习通过用网络模块替换符号器的一阶信息(即(子)梯度或近端运算符)来拓展到级联网络中的一定迭代算法,该算法呈现出更可说明的与常见的数据驱动网络相比,可以预测。相反,理论上,不一定存在这样的功能常规程序,其一级信息与替换的网络模块匹配,这意味着网络输出可能不被原始正则化模型覆盖。此外,到目前为止,在现实假设下,也没有保证展开网络的全球收敛性和鲁棒性(规律性)。为了弥合这一差距,本文建议在展开网络上提出保障方法。具体而言,专注于加速MRI,我们展开了一个零阶算法,网络模块代表常规器本身,使得网络输出可以仍然被正则化模型覆盖。此外,受到深度均衡模型的理想的启发,在反向化之前,我们执行了展开的迭代网络,以收敛到一个固定点,以确保收敛。如果测量数据包含噪声,我们证明了所提出的网络对嘈杂干扰具有强大。最后,数值实验表明,所提出的网络始终如一地优于最先进的MRI重建方法,包括传统的正规化方法和其他深度学习方法。
translated by 谷歌翻译
目的:并行成像通过用一系列接收器线圈获取其他灵敏度信息,从而加速了磁共振成像(MRI)数据,从而降低了相位编码步骤。压缩传感磁共振成像(CS-MRI)在医学成像领域中获得了普及,因为其数据要求较少,而不是平行成像。并行成像和压缩传感(CS)均通过最大程度地减少K空间中捕获的数据量来加快传统MRI获取。由于采集时间与样品的数量成反比,因此从缩短的K空间样品中的图像的反向形成会导致收购更快,但具有混乱的伪像。本文提出了一种新型的生成对抗网络(GAN),即雷德格尔(Recgan-gr)受到多模式损失的监督,以消除重建的图像。方法:与现有的GAN网络相反,我们提出的方法引入了一种新型的发电机网络,即与双域损耗函数集成的弹药网络,包括加权幅度和相位损耗函数以及基于平行成像的损失,即Grappa一致性损失。提出了K空间校正块,以使GAN网络自动化生成不必要的数据,从而使重建过程的收敛性更快。结果:全面的结果表明,拟议的Recgan-GR在基于GAN的方法中的PSNR有4 dB的改善,并且在文献中可用的传统最先进的CNN方法中有2 dB的改进。结论和意义:拟议的工作有助于显着改善低保留数据的图像质量,从而更快地获取了5倍或10倍。
translated by 谷歌翻译