我们考虑了顺序评估的问题,在该问题中,评估者以序列观察候选人,并以在线,不可撤销的方式为这些候选人分配分数。受到在这种环境中研究顺序偏见的心理学文献的激励 - 即,评估结果与候选人出现的顺序之间的依赖性 - 我们为评估者的评级过程提出了一个自然模型,该模型捕获了缺乏固有的校准固有的校准这样的任务。我们进行众包实验,以展示模型的各个方面。然后,我们开始研究如何通过将其作为统计推断问题来纠正模型下的顺序偏差。我们提出了一个接近线性的时间,在线算法,以确保两个规范的排名指标可以保证。我们还通过在两个指标中建立匹配的下限来证明我们的算法在理论上是最佳信息。最后,我们表明我们的算法优于使用报告得分引起的排名的事实上的方法。
translated by 谷歌翻译
招聘和大学录取等许多申请涉及申请人的评估和选择。这些任务在根本上是困难的,并且需要从多个不同方面(我们称为“属性”)结合证据。在这些应用程序中,申请人的数量通常很大,一个常见的做法是以分布式方式将任务分配给多个评估人员。具体而言,在经常使用的整体分配中,每个评估者都会分配申请人的子集,并要求评估其分配的申请人的所有相关信息。但是,这样的评估过程受到诸如错误校准的问题的约束(评估人员仅见一小部分申请人,并且可能没有良好的相对质量感)和歧视(评估者受到有关申请人无关的信息的影响)。我们确定基于属性的评估允许替代分配方案。具体而言,我们考虑分配每个评估者更多的申请人,但每个申请人的属性更少,称为分割分配。我们通过理论和实验方法比较了分段分配与几个维度的整体分配。我们在这两种方法之间建立了各种折衷方案,并确定一种方法在其中一种方法比另一种方法更准确地评估。
translated by 谷歌翻译
爱丽丝(所有者)了解其成绩测量的物品的潜在质量。鉴于独立方提供的嘈杂成绩,鲍勃(评估者)可以通过向爱丽丝提出有关成绩的问题来获得对项目的基本真相的准确估计?当对爱丽丝的回报是她所有物品的加性凸实用性时,我们将解决这个问题。我们确定,如果爱丽丝必须真实地回答这个问题,以使她的回报得到最大化,则必须将问题作为其物品之间的成对比较提出。接下来,我们证明,如果要求爱丽丝(Alice)提供其物品的排名,这是通过成对比较的最细粒度的问题,她将是真实的。通过纳入基本真相排名,我们表明鲍勃可以根据任何可能的真实信息启发的方式获得在某些策略中具有最佳平方错误的估计器。此外,当项目数量较大并且原始等级非常嘈杂时,估计的等级比原始等级要准确得多。最后,我们以几次扩展和一些改进为总结,以进行实际考虑。
translated by 谷歌翻译
在这项工作中,我们研究了鲁布利地学习Mallows模型的问题。我们给出了一种算法,即使其样本的常数分数是任意损坏的恒定分数,也可以准确估计中央排名。此外,我们的稳健性保证是无关的,因为我们的整体准确性不依赖于排名的替代品的数量。我们的工作可以被认为是从算法稳健统计到投票和信息聚集中的中央推理问题之一的视角的自然输注。具体而言,我们的投票规则是有效的可计算的,并且通过一大群勾结的选民无法改变其结果。
translated by 谷歌翻译
公平性是在算法决策中的重要考虑因素。当具有较高优异的代理人获得比具有较低优点的试剂更差的代理人时,发生不公平。我们的中心点是,不公平的主要原因是不确定性。制定决策的主体或算法永远无法访问代理的真实优点,而是使用仅限于不完全预测优点的代理功能(例如,GPA,星形评级,推荐信)。这些都没有完全捕捉代理人的优点;然而,现有的方法主要基于观察到的特征和结果直接定义公平概念。我们的主要观点是明确地承认和模拟不确定性更为原则。观察到的特征的作用是产生代理商的优点的后部分布。我们使用这个观点来定义排名中近似公平的概念。我们称之为algorithm $ \ phi $ -fair(对于$ \ phi \ in [0,1] $)如果它具有以下所有代理商$ x $和所有$ k $:如果代理商$ x $最高$ k $代理以概率至少为$ \ rho $(根据后部优点分配),那么该算法将代理商在其排名中以概率排名,至少$ \ phi \ rho $。我们展示了如何计算最佳地互惠对校长进行近似公平性的排名。除了理论表征外,我们还提出了对模拟研究中的方法的潜在影响的实证分析。对于真实世界的验证,我们在纸质建议系统的背景下应用了这种方法,我们在KDD 2020会议上建立和界定。
translated by 谷歌翻译
我们研究了基于消费者的决策积极学习非参数选择模型的问题。我们提出一个负面结果,表明这种选择模型可能无法识别。为了克服可识别性问题,我们介绍了选择模型的有向无环图(DAG)表示,从某种意义上说,该模型可以捕获有关选择模型的更多信息,从而可以从理论上识别信息。然后,我们考虑在主动学习环境中学习与此DAG表示的近似的问题。我们设计了一种有效的主动学习算法,以估计非参数选择模型的DAG表示,该模型在多项式时间内运行时,当随机均匀地绘制频繁排名。我们的算法通过主动和反复提供各种项目并观察所选项目来了解最受欢迎的频繁偏好项目的分布。我们表明,与相应的非活动学习估计算法相比,我们的算法可以更好地恢复有关消费者偏好的合成和公开数据集的一组频繁偏好。这证明了我们的算法和主动学习方法的价值。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
A common approach to modeling networks assigns each node to a position on a low-dimensional manifold where distance is inversely proportional to connection likelihood. More positive manifold curvature encourages more and tighter communities; negative curvature induces repulsion. We consistently estimate manifold type, dimension, and curvature from simply connected, complete Riemannian manifolds of constant curvature. We represent the graph as a noisy distance matrix based on the ties between cliques, then develop hypothesis tests to determine whether the observed distances could plausibly be embedded isometrically in each of the candidate geometries. We apply our approach to data-sets from economics and neuroscience.
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
Crowdsourcing system has emerged as an effective platform for labeling data with relatively low cost by using non-expert workers. Inferring correct labels from multiple noisy answers on data, however, has been a challenging problem, since the quality of the answers varies widely across tasks and workers. Many existing works have assumed that there is a fixed ordering of workers in terms of their skill levels, and focused on estimating worker skills to aggregate the answers from workers with different weights. In practice, however, the worker skill changes widely across tasks, especially when the tasks are heterogeneous. In this paper, we consider a new model, called $d$-type specialization model, in which each task and worker has its own (unknown) type and the reliability of each worker can vary in the type of a given task and that of a worker. We allow that the number $d$ of types can scale in the number of tasks. In this model, we characterize the optimal sample complexity to correctly infer the labels within any given accuracy, and propose label inference algorithms achieving the order-wise optimal limit even when the types of tasks or those of workers are unknown. We conduct experiments both on synthetic and real datasets, and show that our algorithm outperforms the existing algorithms developed based on more strict model assumptions.
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
本文衍生了置信区间(CI)和时间统一的置信序列(CS),用于从有限观测值中估算未知平均值的经典问题。我们提出了一种衍生浓度界限的一般方法,可以看作是著名的切尔诺夫方法的概括(和改进)。它的核心是基于推导一类新的复合非负胸腔,通过投注和混合方法与测试的连接很强。我们展示了如何将这些想法扩展到无需更换的情况下,这是另一个经过深入研究的问题。在所有情况下,我们的界限都适应未知的差异,并且基于Hoeffding或经验的Bernstein不平等及其最近的Supermartingale概括,经验上大大优于现有方法。简而言之,我们为四个基本问题建立了一个新的最先进的问题:在有或没有替换的情况下进行采样时,CS和CI进行有限的手段。
translated by 谷歌翻译
现在通常用于高风险设置,如医疗诊断,如医疗诊断,那么需要不确定量化,以避免后续模型失败。无分发的不确定性量化(无分布UQ)是用户友好的范式,用于为这种预测创建统计上严格的置信区间/集合。批判性地,间隔/集合有效而不进行分布假设或模型假设,即使具有最多许多DataPoints也具有显式保证。此外,它们适应输入的难度;当输入示例很困难时,不确定性间隔/集很大,信号传达模型可能是错误的。在没有多大的工作和没有再培训的情况下,可以在任何潜在的算法(例如神经网络)上使用无分​​发方法,以产生置信度集,以便包含用户指定概率,例如90%。实际上,这些方法易于理解和一般,应用于计算机视觉,自然语言处理,深度加强学习等领域出现的许多现代预测问题。这种实践介绍是针对对无需统计学家的免费UQ的实际实施感兴趣的读者。我们通过实际的理论和无分发UQ的应用领导读者,从保形预测开始,并使无关的任何风险的分布控制,如虚假发现率,假阳性分布检测,等等。我们将包括Python中的许多解释性插图,示例和代码样本,具有Pytorch语法。目标是提供读者对无分配UQ的工作理解,使它们能够将置信间隔放在算法上,其中包含一个自包含的文档。
translated by 谷歌翻译
我们通过审查反馈重复进行一定的第一价格拍卖来研究在线学习,在每次拍卖结束时,出价者只观察获胜的出价,学会了适应性地出价,以最大程度地提高她的累积回报。为了实现这一目标,投标人面临着一个具有挑战性的困境:如果她赢得了竞标 - 获得正收益的唯一方法 - 然后她无法观察其他竞标者的最高竞标,我们认为我们认为这是从中汲取的。一个未知的分布。尽管这一困境让人联想到上下文强盗中的探索探索折衷权,但现有的UCB或汤普森采样算法无法直接解决。在本文中,通过利用第一价格拍卖的结构属性,我们开发了第一个实现$ o(\ sqrt {t} \ log^{2.5} t)$ hearry bund的第一个学习算法(\ sqrt {t} \ log^{2.5} t),这是最小值的最低$ $ \ log $因素,当投标人的私人价值随机生成时。我们这样做是通过在一系列问题上提供算法,称为部分有序的上下文匪徒,该算法将图形反馈跨动作,跨环境跨上下文进行结合,以及在上下文中的部分顺序。我们通过表现出一个奇怪的分离来确定该框架的优势和劣势,即在随机环境下几乎可以独立于动作/背景规模的遗憾,但是在对抗性环境下是不可能的。尽管这一通用框架有限制,但我们进一步利用了第一价格拍卖的结构,并开发了一种学习算法,该算法在存在对手生成的私有价值的情况下,在存在的情况下可以有效地运行样本(并有效地计算)。我们建立了一个$ o(\ sqrt {t} \ log^3 t)$遗憾,以此为此算法,因此提供了对第一价格拍卖的最佳学习保证的完整表征。
translated by 谷歌翻译
我们考虑估计与I.I.D的排名$ 1 $矩阵因素的问题。高斯,排名$ 1 $的测量值,这些测量值非线性转化和损坏。考虑到非线性的两种典型选择,我们研究了从随机初始化开始的此非convex优化问题的天然交流更新规则的收敛性能。我们通过得出确定性递归,即使在高维问题中也是准确的,我们显示出算法的样本分割版本的敏锐收敛保证。值得注意的是,虽然无限样本的种群更新是非信息性的,并提示单个步骤中的精确恢复,但算法 - 我们的确定性预测 - 从随机初始化中迅速地收敛。我们尖锐的非反应分析也暴露了此问题的其他几种细粒度,包括非线性和噪声水平如何影响收敛行为。从技术层面上讲,我们的结果可以通过证明我们的确定性递归可以通过我们的确定性顺序来预测我们的确定性序列,而当每次迭代都以$ n $观测来运行时,我们的确定性顺序可以通过$ n^{ - 1/2} $的波动。我们的技术利用了源自有关高维$ m $估计文献的遗留工具,并为通过随机数据的其他高维优化问题的随机初始化而彻底地分析了高阶迭代算法的途径。
translated by 谷歌翻译
学习与选择建模的交集是研究的积极研究领域,并在电子商务,信息检索和社会科学中的应用。在某些应用程序(例如推荐系统)中,统计学家主要有兴趣使用被动收集的离散选择数据,即,用户从一组项目中选择一项项目多个项目。在这种实用的考虑方面,我们提出了基于选择的Borda Count算法,作为顶级$ k $ - 重新发现的快速准确的排名算法,即正确识别所有顶级$ K $项目。我们表明,基于选择的Borda计数算法具有最佳的样本复杂性,适用于$ K $恢复在广泛的随机实用程序模型下。我们证明,在极限上,基于选择的Borda计数算法与常用的最大似然估计方法产生相同的顶部$ K $估计值,但是前者的速度和简单性在实践中带来了可观的优势。合成数据集和真实数据集的实验表明,计数算法在准确性方面与常用的排名算法具有竞争力,同时更快地数量级。
translated by 谷歌翻译
由于其出色的经验表现,随机森林是过去十年中使用的机器学习方法之一。然而,由于其黑框的性质,在许多大数据应用中很难解释随机森林的结果。量化各个特征在随机森林中的实用性可以大大增强其解释性。现有的研究表明,一些普遍使用的特征对随机森林的重要性措施遭受了偏见问题。此外,对于大多数现有方法,缺乏全面的规模和功率分析。在本文中,我们通过假设检验解决了问题,并提出了一个自由化特征 - 弥散性相关测试(事实)的框架,以评估具有偏见性属性的随机森林模型中给定特征的重要性,我们零假设涉及该特征是否与所有其他特征有条件地独立于响应。关于高维随机森林一致性的一些最新发展,对随机森林推断的这种努力得到了赋予的能力。在存在功能依赖性的情况下,我们的事实测试的香草版可能会遇到偏见问题。我们利用偏置校正的不平衡和调节技术。我们通过增强功率的功能转换将合奏的想法进一步纳入事实统计范围。在相当普遍的具有依赖特征的高维非参数模型设置下,我们正式确定事实可以提供理论上合理的随机森林具有P值,并通过非催化分析享受吸引人的力量。新建议的方法的理论结果和有限样本优势通过几个模拟示例和与Covid-19的经济预测应用进行了说明。
translated by 谷歌翻译
在许多应用程序(例如运动锦标赛或推荐系统)中,我们可以使用该数据,包括一组$ n $项目(或玩家)之间的成对比较。目的是使用这些数据来推断每个项目和/或其排名的潜在强度。此问题的现有结果主要集中在由单个比较图$ g $组成的设置上。但是,存在成对比较数据随时间发展的场景(例如体育比赛)。这种动态设置的理论结果相对有限,是本文的重点。我们研究\ emph {翻译同步}问题的扩展,到动态设置。在此设置中,我们给出了一系列比较图$(g_t)_ {t \ in \ mathcal {t}} $,其中$ \ nathcal {t} \ subset [0,1] $是代表时间的网格域,对于每个项目$ i $和time $ t \ in \ mathcal {t} $,有一个关联的未知强度参数$ z^*_ {t,i} \ in \ mathbb {r} $。我们的目标是恢复,以$ t \在\ Mathcal {t} $中,强度向量$ z^*_ t =(z^*_ {t,1},\ cdots,z^*_ {t,n}) $从$ z^*_ {t,i} -z^*_ {t,j} $的噪声测量值中,其中$ \ {i,j \} $是$ g_t $中的边缘。假设$ z^*_ t $在$ t $中顺利地演变,我们提出了两个估计器 - 一个基于平滑度的最小二乘方法,另一个基于对合适平滑度操作员低频本质空间的投影。对于两个估计器,我们为$ \ ell_2 $估计错误提供有限的样本范围,假设$ g_t $已连接到\ mathcal {t} $中的所有$ t \网格尺寸$ | \ MATHCAL {T} | $。我们通过有关合成和真实数据的实验来补充理论发现。
translated by 谷歌翻译
本文向许多受访者调查了同时的偏好和度量学习。一组由$ d $二维功能向量和表格的配对比较``项目$ i $都比item $ j $更可取'的项目。我们的模型共同学习了一个距离指标,该指标表征了人群对项目相似性的一般度量,以及每个用户反映其个人喜好的潜在理想点。该模型具有捕获个人喜好的灵活性,同时享受在人群中摊销的度量学习样本成本。我们首先以无声的,连续的响应设置(即等于项目距离的差异)来研究这个问题,以了解学习的基本限制。接下来,我们建立了嘈杂的预测错误保证,可以从人类受访者那里收集诸如二进制测量值,并显示样品复杂性在基础度量较低时如何提高。最后,我们根据响应分布的假设建立恢复保证。我们在模拟数据和大量用户的颜色偏好判断数据集上演示了模型的性能。
translated by 谷歌翻译