公平性是在算法决策中的重要考虑因素。当具有较高优异的代理人获得比具有较低优点的试剂更差的代理人时,发生不公平。我们的中心点是,不公平的主要原因是不确定性。制定决策的主体或算法永远无法访问代理的真实优点,而是使用仅限于不完全预测优点的代理功能(例如,GPA,星形评级,推荐信)。这些都没有完全捕捉代理人的优点;然而,现有的方法主要基于观察到的特征和结果直接定义公平概念。我们的主要观点是明确地承认和模拟不确定性更为原则。观察到的特征的作用是产生代理商的优点的后部分布。我们使用这个观点来定义排名中近似公平的概念。我们称之为algorithm $ \ phi $ -fair(对于$ \ phi \ in [0,1] $)如果它具有以下所有代理商$ x $和所有$ k $:如果代理商$ x $最高$ k $代理以概率至少为$ \ rho $(根据后部优点分配),那么该算法将代理商在其排名中以概率排名,至少$ \ phi \ rho $。我们展示了如何计算最佳地互惠对校长进行近似公平性的排名。除了理论表征外,我们还提出了对模拟研究中的方法的潜在影响的实证分析。对于真实世界的验证,我们在纸质建议系统的背景下应用了这种方法,我们在KDD 2020会议上建立和界定。
translated by 谷歌翻译
排名已成为双面在线市场的主要界面。许多人指出,排名不仅影响用户的满意度(例如,客户,听众,雇主,旅行者),而且排名中的位置将曝光率分配给排名项目(例如,例如文章,产品,歌曲,求职者,餐馆,酒店)。这已经提出了对项目的公平性问题,大多数现有作品通过将项目的暴露与项目相关性明确链接在一起,从而解决了公平性。但是,我们认为,这种链接功能的任何特定选择都可能很难捍卫,我们表明结果排名仍然不公平。为了避免这些缺点,我们开发了一种植根于公平分裂原则的新的公理方法。这不仅避免了选择链接功能的需求,而且更有意义地量化了对曝光范围之外的项目的影响。我们对统一排名的嫉妒性和主导地位的公理假设,对于公平排名政策,每个项目都应该比其他任何项目的排名分配,并且任何项目都不应受到排名的不利影响。为了计算按照这些公理的公平政策,我们提出了一个与纳什社会福利有关的新排名目标。我们表明,该解决方案已保证其嫉妒性,其对每个项目的统一排名的主导地位以及帕累托的最优性。相比之下,我们表明,基于暴露的公平性可以产生大量嫉妒,并对这些物品产生高度不同的影响。除了这些理论上的结果外,我们还从经验上说明了我们的框架如何控制基于影响的个人项目公平和用户实用程序之间的权衡。
translated by 谷歌翻译
Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 150 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to specific research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent, and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.
translated by 谷歌翻译
学习 - 排名问题旨在排名,以最大限度地曝光与用户查询相关的那些。这种排名系统的理想特性是保证指定项目组之间的一些公平概念。虽然最近在学习排名系统的背景下审议了公平性,但目前的方法无法提供拟议的排名政策的公平性的担保。本文解决了这一差距,并介绍了智能预测,并优化了公平排名(SPOFR),综合优化和学习框架,以便进行公平受限学习。端到端的SPOFR框架包括受约束的优化子模型,并产生保证的排名策略,以满足公平限制,同时允许对公平实用权概况进行精细控制。SPOFR显示出在既定的性能指标方面显着提高当前最先进的公平学习系统。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
我们研究了通过中等数量的成对比较查询引发决策者偏好的问题,以使它们成为特定问题的高质量推荐。我们受到高赌场域中的应用程序的推动,例如选择分配稀缺资源的政策以满足基本需求(例如,用于移植或住房的肾脏,因为那些经历无家可归者),其中需要由(部分)提出引出的偏好。我们在基于偏好的偏好中模拟不确定性,并调查两个设置:a)脱机偏出设置,其中所有查询都是一次,b)在线诱因设置,其中按时间顺序选择查询。我们提出了这些问题的强大优化制剂,这些问题集成了偏好诱导和推荐阶段,其目的是最大化最坏情况的效用或最小化最坏情况的后悔,并研究其复杂性。对于离线案例,在活动偏好诱导与决策信息发现的两个半阶段的稳健优化问题的形式中,我们提供了我们通过列解决的混合二进制线性程序的形式提供了等效的重构。 -Constraint生成。对于在线设置,主动偏好学习采用多级强大优化问题的形式与决策依赖的信息发现,我们提出了一种保守的解决方案方法。合成数据的数值研究表明,我们的方法在最坏情况级别,后悔和效用方面从文献中倾斜最先进的方法。我们展示了我们的方法论如何用于协助无家可归的服务机构选择分配不同类型的稀缺住房资源的政策,以遇到无家可归者。
translated by 谷歌翻译
推荐系统正面临审查,因为它们对我们可以获得的机会的影响越来越大。目前对公平的审计仅限于敏感群体水平的粗粒度评估。我们建议审核嫉妒 - 狂喜,一个与个别偏好对齐的更精细的标准:每个用户都应该更喜欢他们的建议给其他用户的建议。由于审计要求估计用户超出现有建议的用户的偏好,因此我们将审计作为多武装匪徒的新纯粹探索问题。我们提出了一种采样的效率算法,具有理论上的保证,它不会恶化用户体验。我们还研究了现实世界推荐数据集实现的权衡。
translated by 谷歌翻译
招聘或大学入学等选择问题的歧视通常是由决策者对弱势人口群体的隐性偏见来解释的。在本文中,我们考虑了决策者收到每个候选品质的噪声估计的模型,其方差取决于候选人的组 - 我们认为这种差异方差是许多选择问题的关键特征。我们分析了两个值得注意的设置:首先,噪声差异对于决策者而言是未知的,他只能独立于他们的群体选择最高的估计质量;在第二个中,差异是已知的,决策者挑选了给出嘈杂估计的最高预期质量的候选者。我们表明,两者的基线决策者都会产生歧视,尽管在相反的方向:第一个导致低方差集团的代表性不足,而第二个导致高方差群体的代表性不足。我们研究了对施加公平机制的选择效用的影响,我们将获得$ \ Gamma $ -rule术语(它是古典四分之五规则的延伸,它还包括人口统计奇偶校验)。在第一个设置(具有未知的差异)中,我们证明,在温和的条件下,施加$ \ Gamma $ -rule增加了选择效用 - 在这里,公平与公用事业之间没有权衡。在第二个设置(具有已知的差异)中,施加$ \ Gamma $ -rule降低了该实用程序,但我们由于公平机制而证明了该公用事业损失的束缚。
translated by 谷歌翻译
通常,根据某些固有的价值衡量标准,绩效是定义的。相反,我们考虑一个个人的价值为\ emph {相对}的设置:当决策者(DM)选择一组从人口中的个人来最大化预期效用时,自然考虑\ emph {预期的边际贡献}(每个人的emc)。我们表明,这个概念满足了这种环境公平性的公理定义。我们还表明,对于某些政策结构,这种公平概念与最大化的预期效用保持一致,而对于线性实用程序功能,它与Shapley值相同。但是,对于某些自然政策,例如选择具有一组特定属性的个人的政策(例如,大学入学的足够高考试成绩),精英级和公用事业最大化之间存在权衡。我们根据挪威大学的大学录取和成果,分析了限制对政策对效用和公平性的影响。
translated by 谷歌翻译
我们研究了基于消费者的决策积极学习非参数选择模型的问题。我们提出一个负面结果,表明这种选择模型可能无法识别。为了克服可识别性问题,我们介绍了选择模型的有向无环图(DAG)表示,从某种意义上说,该模型可以捕获有关选择模型的更多信息,从而可以从理论上识别信息。然后,我们考虑在主动学习环境中学习与此DAG表示的近似的问题。我们设计了一种有效的主动学习算法,以估计非参数选择模型的DAG表示,该模型在多项式时间内运行时,当随机均匀地绘制频繁排名。我们的算法通过主动和反复提供各种项目并观察所选项目来了解最受欢迎的频繁偏好项目的分布。我们表明,与相应的非活动学习估计算法相比,我们的算法可以更好地恢复有关消费者偏好的合成和公开数据集的一组频繁偏好。这证明了我们的算法和主动学习方法的价值。
translated by 谷歌翻译
The fair-ranking problem, which asks to rank a given set of items to maximize utility subject to group fairness constraints, has received attention in the fairness, information retrieval, and machine learning literature. Recent works, however, observe that errors in socially-salient (including protected) attributes of items can significantly undermine fairness guarantees of existing fair-ranking algorithms and raise the problem of mitigating the effect of such errors. We study the fair-ranking problem under a model where socially-salient attributes of items are randomly and independently perturbed. We present a fair-ranking framework that incorporates group fairness requirements along with probabilistic information about perturbations in socially-salient attributes. We provide provable guarantees on the fairness and utility attainable by our framework and show that it is information-theoretically impossible to significantly beat these guarantees. Our framework works for multiple non-disjoint attributes and a general class of fairness constraints that includes proportional and equal representation. Empirically, we observe that, compared to baselines, our algorithm outputs rankings with higher fairness, and has a similar or better fairness-utility trade-off compared to baselines.
translated by 谷歌翻译
我们研究了一个决策者的问题,即当面对参与决策(随机)取决于他们获得的激励措施的代理商时,发现最佳的货币激励计划。我们的重点是限制的政策,以实现两种公平性能,这些公平性能排除了不同的代理人平均经历不同治疗的结果。我们将问题提出为高维的随机优化问题,并通过使用紧密相关的确定性变体进行研究。我们表明,该确定性变体的最佳静态解决方案对于在公平性约束下的动态问题均非最佳。尽管解决最佳静态解决方案会引起非凸优化问题,但我们发现了一个结构性属性,该属性使我们能够设计一种可拖延,快速的启发式策略。利益相关者保留的传统计划忽略公平限制;确实,这些目的是利用差异化激励与系统的反复互动。我们的工作(i)表明,即使没有明确的歧视,动态政策也可能通过改变系统的类型组成而无意间歧视不同类型的药物,并且(ii)提出了渐近的最佳政策,以避免这种歧视性局势。
translated by 谷歌翻译
We study fairness in classification, where individuals are classified, e.g., admitted to a university, and the goal is to prevent discrimination against individuals based on their membership in some group, while maintaining utility for the classifier (the university). The main conceptual contribution of this paper is a framework for fair classification comprising (1) a (hypothetical) task-specific metric for determining the degree to which individuals are similar with respect to the classification task at hand; (2) an algorithm for maximizing utility subject to the fairness constraint, that similar individuals are treated similarly. We also present an adaptation of our approach to achieve the complementary goal of "fair affirmative action," which guarantees statistical parity (i.e., the demographics of the set of individuals receiving any classification are the same as the demographics of the underlying population), while treating similar individuals as similarly as possible. Finally, we discuss the relationship of fairness to privacy: when fairness implies privacy, and how tools developed in the context of differential privacy may be applied to fairness.
translated by 谷歌翻译
Virtually all machine learning tasks are characterized using some form of loss function, and "good performance" is typically stated in terms of a sufficiently small average loss, taken over the random draw of test data. While optimizing for performance on average is intuitive, convenient to analyze in theory, and easy to implement in practice, such a choice brings about trade-offs. In this work, we survey and introduce a wide variety of non-traditional criteria used to design and evaluate machine learning algorithms, place the classical paradigm within the proper historical context, and propose a view of learning problems which emphasizes the question of "what makes for a desirable loss distribution?" in place of tacit use of the expected loss.
translated by 谷歌翻译
建立公平的推荐系统是一个具有挑战性且至关重要的研究领域,因为它对社会产生了巨大影响。我们将两个普遍公认的公平概念的定义扩展到了推荐系统,即机会平等和均衡的赔率。这些公平措施确保同样对待“合格”(或“不合格”)候选人,无论其受保护的属性状况如何(例如性别或种族)。我们提出了可扩展的方法,以实现机会平等和在存在位置偏见的情况下排名均等的几率,这通常会困扰推荐系统产生的数据。我们的算法是模型不可知论,因为它们仅依赖于模型提供的最终分数,因此很容易适用于几乎所有Web尺度推荐系统。我们进行广泛的模拟以及现实世界实验,以显示我们方法的功效。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
我们考虑了顺序评估的问题,在该问题中,评估者以序列观察候选人,并以在线,不可撤销的方式为这些候选人分配分数。受到在这种环境中研究顺序偏见的心理学文献的激励 - 即,评估结果与候选人出现的顺序之间的依赖性 - 我们为评估者的评级过程提出了一个自然模型,该模型捕获了缺乏固有的校准固有的校准这样的任务。我们进行众包实验,以展示模型的各个方面。然后,我们开始研究如何通过将其作为统计推断问题来纠正模型下的顺序偏差。我们提出了一个接近线性的时间,在线算法,以确保两个规范的排名指标可以保证。我们还通过在两个指标中建立匹配的下限来证明我们的算法在理论上是最佳信息。最后,我们表明我们的算法优于使用报告得分引起的排名的事实上的方法。
translated by 谷歌翻译
当代理偏好未知的先验时,我们研究了在共享资源的稀缺时决策的问题问题,并且必须从数据中学到。将双面匹配市场作为一个跑步的例子,我们专注于分散的环境,代理商不会与中央权威分享他们的学习偏好。我们的方法基于再生内核希尔伯特空间中的偏好的表示,以及偏好的学习算法,其由于市场代理商之间的竞争而占不确定性的偏好。在规律性条件下,我们表明我们的偏好估算器以极少的最佳速率收敛。考虑到这一结果,我们推出了最佳策略,最大化代理商的预期收益,我们通过考虑机会成本来校准不确定的状态。我们还获得了激励兼容性属性,并表明学习策略的结果具有稳定性。最后,我们证明了一个公平性质,称赞根据学到的策略存在没有合理的嫉妒。
translated by 谷歌翻译
算法公平吸引了机器学习社区越来越多的关注。文献中提出了各种定义,但是它们之间的差异和联系并未清楚地解决。在本文中,我们回顾并反思了机器学习文献中先前提出的各种公平概念,并试图与道德和政治哲学,尤其是正义理论的论点建立联系。我们还从动态的角度考虑了公平的询问,并进一步考虑了当前预测和决策引起的长期影响。鉴于特征公平性的差异,我们提出了一个流程图,该流程图包括对数据生成过程,预测结果和诱导的影响的不同类型的公平询问的隐式假设和预期结果。本文展示了与任务相匹配的重要性(人们希望执行哪种公平性)和实现预期目的的手段(公平分析的范围是什么,什么是适当的分析计划)。
translated by 谷歌翻译
大多数在线平台都在努力从与用户的互动中学习,许多人从事探索:为了获取新信息而做出潜在的次优选择。我们研究探索与竞争之间的相互作用:这样的平台如何平衡学习探索和用户的竞争。在这里,用户扮演三个不同的角色:他们是产生收入的客户,他们是学习的数据来源,并且是自私的代理商,可以在竞争平台中进行选择。我们考虑了一种风格化的双重垄断模型,其中两家公司面临着相同的多军强盗问题。用户一一到达,并在两家公司之间进行选择,因此,只有在选择它的情况下,每个公司都在其强盗问题上取得进展。通过理论结果和数值模拟的混合,我们研究了竞争是否会激发更好的Bandit算法的采用,以及它是否导致用户增加福利。我们发现,Stark竞争会导致公司致力于导致低福利的“贪婪”强盗算法。但是,通过向公司提供一些“免费”用户来激励更好的探索策略并增加福利来削弱竞争。我们调查了削弱竞争的两个渠道:放松用户的理性并为一家公司带来首次推广优势。我们的发现与“竞争与创新”关系密切相关,并阐明了数字经济中的第一步优势。
translated by 谷歌翻译