招聘和大学录取等许多申请涉及申请人的评估和选择。这些任务在根本上是困难的,并且需要从多个不同方面(我们称为“属性”)结合证据。在这些应用程序中,申请人的数量通常很大,一个常见的做法是以分布式方式将任务分配给多个评估人员。具体而言,在经常使用的整体分配中,每个评估者都会分配申请人的子集,并要求评估其分配的申请人的所有相关信息。但是,这样的评估过程受到诸如错误校准的问题的约束(评估人员仅见一小部分申请人,并且可能没有良好的相对质量感)和歧视(评估者受到有关申请人无关的信息的影响)。我们确定基于属性的评估允许替代分配方案。具体而言,我们考虑分配每个评估者更多的申请人,但每个申请人的属性更少,称为分割分配。我们通过理论和实验方法比较了分段分配与几个维度的整体分配。我们在这两种方法之间建立了各种折衷方案,并确定一种方法在其中一种方法比另一种方法更准确地评估。
translated by 谷歌翻译
我们考虑了顺序评估的问题,在该问题中,评估者以序列观察候选人,并以在线,不可撤销的方式为这些候选人分配分数。受到在这种环境中研究顺序偏见的心理学文献的激励 - 即,评估结果与候选人出现的顺序之间的依赖性 - 我们为评估者的评级过程提出了一个自然模型,该模型捕获了缺乏固有的校准固有的校准这样的任务。我们进行众包实验,以展示模型的各个方面。然后,我们开始研究如何通过将其作为统计推断问题来纠正模型下的顺序偏差。我们提出了一个接近线性的时间,在线算法,以确保两个规范的排名指标可以保证。我们还通过在两个指标中建立匹配的下限来证明我们的算法在理论上是最佳信息。最后,我们表明我们的算法优于使用报告得分引起的排名的事实上的方法。
translated by 谷歌翻译
Advocates of algorithmic techniques like data mining argue that these techniques eliminate human biases from the decision-making process. But an algorithm is only as good as the data it works with. Data is frequently imperfect in ways that allow these algorithms to inherit the prejudices of prior decision makers. In other cases, data may simply reflect the widespread biases that persist in society at large. In still others, data mining can discover surprisingly useful regularities that are really just preexisting patterns of exclusion and inequality. Unthinking reliance on data mining can deny historically disadvantaged and vulnerable groups full participation in society. Worse still, because the resulting discrimination is almost always an unintentional emergent property of the algorithm's use rather than a conscious choice by its programmers, it can be unusually hard to identify the source of the problem or to explain it to a court. This Essay examines these concerns through the lens of American antidiscrimination law-more particularly, through Title
translated by 谷歌翻译
Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 150 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to specific research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent, and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.
translated by 谷歌翻译
算法公平吸引了机器学习社区越来越多的关注。文献中提出了各种定义,但是它们之间的差异和联系并未清楚地解决。在本文中,我们回顾并反思了机器学习文献中先前提出的各种公平概念,并试图与道德和政治哲学,尤其是正义理论的论点建立联系。我们还从动态的角度考虑了公平的询问,并进一步考虑了当前预测和决策引起的长期影响。鉴于特征公平性的差异,我们提出了一个流程图,该流程图包括对数据生成过程,预测结果和诱导的影响的不同类型的公平询问的隐式假设和预期结果。本文展示了与任务相匹配的重要性(人们希望执行哪种公平性)和实现预期目的的手段(公平分析的范围是什么,什么是适当的分析计划)。
translated by 谷歌翻译
Recent discussion in the public sphere about algorithmic classification has involved tension between competing notions of what it means for a probabilistic classification to be fair to different groups. We formalize three fairness conditions that lie at the heart of these debates, and we prove that except in highly constrained special cases, there is no method that can satisfy these three conditions simultaneously. Moreover, even satisfying all three conditions approximately requires that the data lie in an approximate version of one of the constrained special cases identified by our theorem. These results suggest some of the ways in which key notions of fairness are incompatible with each other, and hence provide a framework for thinking about the trade-offs between them.
translated by 谷歌翻译
CS中的主要出版物场所进行的同行评审会议务必依赖每篇论文的高素质审阅者。由于这些会议的规模越来越大,它们的工作时间表以及最近明显不诚实的行为激增,现在没有其他选择以自动化的方式进行这种匹配。本文研究了一种新颖的审阅者纸匹配方法,该方法最近在第35届AAAI人工智能会议(AAAI 2021)中部署,此后已被包括ICML 2022,AAAAI 2022和IJCAI 2022的其他会议(全部或部分)采用(完全或部分) 。该方法具有三个主要元素:(1)收集和处理输入数据以识别有问题的匹配并生成审阅者纸得分; (2)制定和解决优化问题,以找到良好的审阅者纸匹配; (3)两阶段的审查过程,将审查资源从可能被拒绝的论文转移到更接近决策界的文件。本文还根据对真实数据的大量事后分析进行了对这些创新的评估,包括与AAAI先前(2020年)迭代中使用的匹配算法进行比较 - 并通过其他数值实验对此进行了补充。
translated by 谷歌翻译
Based on administrative data of unemployed in Belgium, we estimate the labour market effects of three training programmes at various aggregation levels using Modified Causal Forests, a causal machine learning estimator. While all programmes have positive effects after the lock-in period, we find substantial heterogeneity across programmes and unemployed. Simulations show that 'black-box' rules that reassign unemployed to programmes that maximise estimated individual gains can considerably improve effectiveness: up to 20 percent more (less) time spent in (un)employment within a 30 months window. A shallow policy tree delivers a simple rule that realizes about 70 percent of this gain.
translated by 谷歌翻译
招聘或大学入学等选择问题的歧视通常是由决策者对弱势人口群体的隐性偏见来解释的。在本文中,我们考虑了决策者收到每个候选品质的噪声估计的模型,其方差取决于候选人的组 - 我们认为这种差异方差是许多选择问题的关键特征。我们分析了两个值得注意的设置:首先,噪声差异对于决策者而言是未知的,他只能独立于他们的群体选择最高的估计质量;在第二个中,差异是已知的,决策者挑选了给出嘈杂估计的最高预期质量的候选者。我们表明,两者的基线决策者都会产生歧视,尽管在相反的方向:第一个导致低方差集团的代表性不足,而第二个导致高方差群体的代表性不足。我们研究了对施加公平机制的选择效用的影响,我们将获得$ \ Gamma $ -rule术语(它是古典四分之五规则的延伸,它还包括人口统计奇偶校验)。在第一个设置(具有未知的差异)中,我们证明,在温和的条件下,施加$ \ Gamma $ -rule增加了选择效用 - 在这里,公平与公用事业之间没有权衡。在第二个设置(具有已知的差异)中,施加$ \ Gamma $ -rule降低了该实用程序,但我们由于公平机制而证明了该公用事业损失的束缚。
translated by 谷歌翻译
公平性是在算法决策中的重要考虑因素。当具有较高优异的代理人获得比具有较低优点的试剂更差的代理人时,发生不公平。我们的中心点是,不公平的主要原因是不确定性。制定决策的主体或算法永远无法访问代理的真实优点,而是使用仅限于不完全预测优点的代理功能(例如,GPA,星形评级,推荐信)。这些都没有完全捕捉代理人的优点;然而,现有的方法主要基于观察到的特征和结果直接定义公平概念。我们的主要观点是明确地承认和模拟不确定性更为原则。观察到的特征的作用是产生代理商的优点的后部分布。我们使用这个观点来定义排名中近似公平的概念。我们称之为algorithm $ \ phi $ -fair(对于$ \ phi \ in [0,1] $)如果它具有以下所有代理商$ x $和所有$ k $:如果代理商$ x $最高$ k $代理以概率至少为$ \ rho $(根据后部优点分配),那么该算法将代理商在其排名中以概率排名,至少$ \ phi \ rho $。我们展示了如何计算最佳地互惠对校长进行近似公平性的排名。除了理论表征外,我们还提出了对模拟研究中的方法的潜在影响的实证分析。对于真实世界的验证,我们在纸质建议系统的背景下应用了这种方法,我们在KDD 2020会议上建立和界定。
translated by 谷歌翻译
业务分析(BA)的广泛采用带来了财务收益和提高效率。但是,当BA以公正的影响为决定时,这些进步同时引起了人们对法律和道德挑战的不断增加。作为对这些关注的回应,对算法公平性的新兴研究涉及算法输出,这些算法可能会导致不同的结果或其他形式的对人群亚组的不公正现象,尤其是那些在历史上被边缘化的人。公平性是根据法律合规,社会责任和效用是相关的;如果不充分和系统地解决,不公平的BA系统可能会导致社会危害,也可能威胁到组织自己的生存,其竞争力和整体绩效。本文提供了有关算法公平的前瞻性,注重BA的评论。我们首先回顾有关偏见来源和措施的最新研究以及偏见缓解算法。然后,我们对公用事业关系的详细讨论进行了详细的讨论,强调经常假设这两种构造之间经常是错误的或短视的。最后,我们通过确定企业学者解决有效和负责任的BA的关键的有影响力的公开挑战的机会来绘制前进的道路。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
情绪分析中最突出的任务是为文本分配情绪,并了解情绪如何在语言中表现出来。自然语言处理的一个重要观察结果是,即使没有明确提及情感名称,也可以通过单独参考事件来隐式传达情绪。在心理学中,被称为评估理论的情感理论类别旨在解释事件与情感之间的联系。评估可以被形式化为变量,通过他们认为相关的事件的人们的认知评估来衡量认知评估。其中包括评估事件是否是新颖的,如果该人认为自己负责,是否与自己的目标以及许多其他人保持一致。这样的评估解释了哪些情绪是基于事件开发的,例如,新颖的情况会引起惊喜或不确定后果的人可能引起恐惧。我们在文本中分析了评估理论对情绪分析的适用性,目的是理解注释者是否可以可靠地重建评估概念,如果可以通过文本分类器预测,以及评估概念是否有助于识别情感类别。为了实现这一目标,我们通过要求人们发短信描述触发特定情绪并披露其评估的事件来编译语料库。然后,我们要求读者重建文本中的情感和评估。这种设置使我们能够衡量是否可以纯粹从文本中恢复情绪和评估,并为判断模型的绩效指标提供人体基准。我们将文本分类方法与人类注释者的比较表明,两者都可以可靠地检测出具有相似性能的情绪和评估。我们进一步表明,评估概念改善了文本中情绪的分类。
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
预测组合在预测社区中蓬勃发展,近年来,已经成为预测研究和活动主流的一部分。现在,由单个(目标)系列产生的多个预测组合通过整合来自不同来源收集的信息,从而提高准确性,从而减轻了识别单个“最佳”预测的风险。组合方案已从没有估计的简单组合方法演变为涉及时间变化的权重,非线性组合,组件之间的相关性和交叉学习的复杂方法。它们包括结合点预测和结合概率预测。本文提供了有关预测组合的广泛文献的最新评论,并参考可用的开源软件实施。我们讨论了各种方法的潜在和局限性,并突出了这些思想如何随着时间的推移而发展。还调查了有关预测组合实用性的一些重要问题。最后,我们以当前的研究差距和未来研究的潜在见解得出结论。
translated by 谷歌翻译
公平性是确保机器学习(ML)预测系统不会歧视特定个人或整个子人群(尤其是少数族裔)的重要要求。鉴于观察公平概念的固有主观性,文献中已经引入了几种公平概念。本文是一项调查,说明了通过大量示例和场景之间的公平概念之间的微妙之处。此外,与文献中的其他调查不同,它解决了以下问题:哪种公平概念最适合给定的现实世界情景,为什么?我们试图回答这个问题的尝试包括(1)确定手头现实世界情景的一组与公平相关的特征,(2)分析每个公平概念的行为,然后(3)适合这两个元素以推荐每个特定设置中最合适的公平概念。结果总结在决策图中可以由从业者和政策制定者使用,以导航相对较大的ML目录。
translated by 谷歌翻译
Prior work has identified a resilient phenomenon that threatens the performance of human-AI decision-making teams: overreliance, when people agree with an AI, even when it is incorrect. Surprisingly, overreliance does not reduce when the AI produces explanations for its predictions, compared to only providing predictions. Some have argued that overreliance results from cognitive biases or uncalibrated trust, attributing overreliance to an inevitability of human cognition. By contrast, our paper argues that people strategically choose whether or not to engage with an AI explanation, demonstrating empirically that there are scenarios where AI explanations reduce overreliance. To achieve this, we formalize this strategic choice in a cost-benefit framework, where the costs and benefits of engaging with the task are weighed against the costs and benefits of relying on the AI. We manipulate the costs and benefits in a maze task, where participants collaborate with a simulated AI to find the exit of a maze. Through 5 studies (N = 731), we find that costs such as task difficulty (Study 1), explanation difficulty (Study 2, 3), and benefits such as monetary compensation (Study 4) affect overreliance. Finally, Study 5 adapts the Cognitive Effort Discounting paradigm to quantify the utility of different explanations, providing further support for our framework. Our results suggest that some of the null effects found in literature could be due in part to the explanation not sufficiently reducing the costs of verifying the AI's prediction.
translated by 谷歌翻译
公共机构对数据驱动的决策支持的使用变得越来越普遍,并且已经影响了公共资源的分配。这引起了道德问题,因为它对少数群体和历史上有歧视的群体产生了不利影响。在本文中,我们使用一种将统计和机器学习与动态建模相结合的方法来评估劳动力市场干预的长期公平影响。具体而言,我们开发和使用模型来研究由公共就业机构造成的决策影响,该授权有选择地通过有针对性的帮助来支持寻求工作的人。选择谁获得帮助的人的选择基于数据驱动的干预模型,该模型估算个人及时寻找工作的机会,并基于描述人口的数据,该人口与劳动力市场相关的技能之间分布不均两组(例如,男性和女性)。干预模型无法完全访问个人的实际技能,可以通过了解个人的群体隶属关系来增强此功能,从而使用受保护的属性来提高预测精度。我们评估了这种干预模型的动态,尤其是与公平相关的问题和不同公平目标之间的权衡 - 随着时间的流逝,并将其与不使用群体隶属关系作为预测功能的干预模型进行比较。我们得出的结论是,为了正确量化权衡并评估这种系统在现实世界中的长期公平效果,对周围劳动力市场的仔细建模是必不可少的。
translated by 谷歌翻译
有许多可用于选择优先考虑治疗的可用方法,包括基于治疗效果估计,风险评分和手工制作规则的遵循申请。我们将秩加权平均治疗效应(RATY)指标作为一种简单常见的指标系列,用于比较水平竞争范围的治疗优先级规则。对于如何获得优先级规则,率是不可知的,并且仅根据他们在识别受益于治疗中受益的单位的方式进行评估。我们定义了一系列速率估算器,并证明了一个中央限位定理,可以在各种随机和观测研究环境中实现渐近精确的推断。我们为使用自主置信区间的使用提供了理由,以及用于测试关于治疗效果中的异质性的假设的框架,与优先级规则相关。我们对速率的定义嵌套了许多现有度量,包括QINI系数,以及我们的分析直接产生了这些指标的推论方法。我们展示了我们从个性化医学和营销的示例中的方法。在医疗环境中,使用来自Sprint和Accor-BP随机对照试验的数据,我们发现没有明显的证据证明异质治疗效果。另一方面,在大量的营销审判中,我们在一些数字广告活动的治疗效果中发现了具有的强大证据,并证明了如何使用率如何比较优先考虑估计风险的目标规则与估计治疗效益优先考虑的目标规则。
translated by 谷歌翻译
最近的经验工作表明,即使所有广告商以非歧视性方式出价,在线广告也可以在用户交付广告时展示偏见。我们研究了广告拍卖的设计,鉴于公平的出价,保证有关展览会产生公平的结果。遵循DWORK和ILVENTO(2019)和CHAWLA等人的作品。 (2020年),我们的目标是设计一种真实的拍卖,这些拍卖会满足其结果的“个人公平”:非正式地说,相似彼此的用户应该获得类似的广告分配。在本框架内,我们量化了社会福利最大化和公平性之间的权衡。这项工作提出了两个概念贡献。首先,我们将公平约束表达为一种稳定条件:所有广告商的任何两个用户都分配了乘法相似的值,必须为每个广告商接受类似的相似分配。该值稳定性约束表示为函数,该函数将值向量之间的乘法距离映射到相应分配之间的最大允许$ \ {\ infty} $距离。标准拍卖不满足这种价值稳定性。其次,我们介绍了一个新的一类分配算法,称为反比例分配,实现公平和社会福利之间的近似最佳权衡,以实现广泛和表现力的价值稳定条件。这些分配算法是真实的,并且先前的,并且实现了最佳(无约会)社会福利的恒定因素近似。特别地,近似比与系统中的广告商的数量无关。在这方面,这些分配算法极大地超越了以前的工作中实现的保证。我们还将结果扩展到更广泛的公平概念,以至于我们称之为公平性。
translated by 谷歌翻译