招聘或大学入学等选择问题的歧视通常是由决策者对弱势人口群体的隐性偏见来解释的。在本文中,我们考虑了决策者收到每个候选品质的噪声估计的模型,其方差取决于候选人的组 - 我们认为这种差异方差是许多选择问题的关键特征。我们分析了两个值得注意的设置:首先,噪声差异对于决策者而言是未知的,他只能独立于他们的群体选择最高的估计质量;在第二个中,差异是已知的,决策者挑选了给出嘈杂估计的最高预期质量的候选者。我们表明,两者的基线决策者都会产生歧视,尽管在相反的方向:第一个导致低方差集团的代表性不足,而第二个导致高方差群体的代表性不足。我们研究了对施加公平机制的选择效用的影响,我们将获得$ \ Gamma $ -rule术语(它是古典四分之五规则的延伸,它还包括人口统计奇偶校验)。在第一个设置(具有未知的差异)中,我们证明,在温和的条件下,施加$ \ Gamma $ -rule增加了选择效用 - 在这里,公平与公用事业之间没有权衡。在第二个设置(具有已知的差异)中,施加$ \ Gamma $ -rule降低了该实用程序,但我们由于公平机制而证明了该公用事业损失的束缚。
translated by 谷歌翻译
在招聘,晋升和大学录取等选择过程中,众所周知,候选人的种族,性别或性取向等社会质量属性的隐性偏见会造成持久的不平等,并减少决策者的总效用。已经提出了诸如鲁尼规则及其概括之类的干预措施,这些干预措施要求决策者至少选择每个受影响组的指定数量的个体,以减轻隐性偏见在选择中的不利影响。最近的工作已经确定,在每个人最多属于一个受影响的群体的情况下,这种较低的约束对于改善总效用可能非常有效。但是,在某些情况下,个人可能属于多个受影响的群体,因此,由于这种交叉性,面临更大的隐含偏见。我们考虑独立绘制的实用程序,并表明在相交的情况下,上述非交流约束只能在没有隐性偏见的情况下恢复可实现的总效用的一部分。另一方面,我们表明,如果一个人在交叉点上包含适当的下限约束,那么在没有隐式偏见的情况下,几乎所有实用程序都可以恢复。因此,相交的约束可以比减少尺寸的非相互作用方法可提供显着优势,以减少不平等。
translated by 谷歌翻译
公平性是在算法决策中的重要考虑因素。当具有较高优异的代理人获得比具有较低优点的试剂更差的代理人时,发生不公平。我们的中心点是,不公平的主要原因是不确定性。制定决策的主体或算法永远无法访问代理的真实优点,而是使用仅限于不完全预测优点的代理功能(例如,GPA,星形评级,推荐信)。这些都没有完全捕捉代理人的优点;然而,现有的方法主要基于观察到的特征和结果直接定义公平概念。我们的主要观点是明确地承认和模拟不确定性更为原则。观察到的特征的作用是产生代理商的优点的后部分布。我们使用这个观点来定义排名中近似公平的概念。我们称之为algorithm $ \ phi $ -fair(对于$ \ phi \ in [0,1] $)如果它具有以下所有代理商$ x $和所有$ k $:如果代理商$ x $最高$ k $代理以概率至少为$ \ rho $(根据后部优点分配),那么该算法将代理商在其排名中以概率排名,至少$ \ phi \ rho $。我们展示了如何计算最佳地互惠对校长进行近似公平性的排名。除了理论表征外,我们还提出了对模拟研究中的方法的潜在影响的实证分析。对于真实世界的验证,我们在纸质建议系统的背景下应用了这种方法,我们在KDD 2020会议上建立和界定。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
我们研究了一个决策者的问题,即当面对参与决策(随机)取决于他们获得的激励措施的代理商时,发现最佳的货币激励计划。我们的重点是限制的政策,以实现两种公平性能,这些公平性能排除了不同的代理人平均经历不同治疗的结果。我们将问题提出为高维的随机优化问题,并通过使用紧密相关的确定性变体进行研究。我们表明,该确定性变体的最佳静态解决方案对于在公平性约束下的动态问题均非最佳。尽管解决最佳静态解决方案会引起非凸优化问题,但我们发现了一个结构性属性,该属性使我们能够设计一种可拖延,快速的启发式策略。利益相关者保留的传统计划忽略公平限制;确实,这些目的是利用差异化激励与系统的反复互动。我们的工作(i)表明,即使没有明确的歧视,动态政策也可能通过改变系统的类型组成而无意间歧视不同类型的药物,并且(ii)提出了渐近的最佳政策,以避免这种歧视性局势。
translated by 谷歌翻译
在高赌注域中的机器学习工具的实际应用通常被调节为公平,因此预测目标应该满足相对于受保护属性的奇偶校验的一些定量概念。然而,公平性和准确性之间的确切权衡并不完全清楚,即使是对分类问题的基本范式也是如此。在本文中,我们通过在任何公平分类器的群体误差之和中提供较低的界限,在分类设置中表征统计奇偶校验和准确性之间的固有权衡。我们不可能的定理可以被解释为公平的某种不确定性原则:如果基本率不同,那么符合统计奇偶校验的任何公平分类器都必须在至少一个组中产生很大的错误。我们进一步扩展了这一结果,以便在学习公平陈述的角度下给出任何(大约)公平分类者的联合误差的下限。为了表明我们的下限是紧张的,假设Oracle访问贝叶斯(潜在不公平)分类器,我们还构造了一种返回一个随机分类器的算法,这是最佳和公平的。有趣的是,当受保护的属性可以采用超过两个值时,这个下限的扩展不承认分析解决方案。然而,在这种情况下,我们表明,通过解决线性程序,我们可以通过解决我们作为电视 - 重心问题的术语,电视距离的重心问题来有效地计算下限。在上面,我们证明,如果集团明智的贝叶斯最佳分类器是关闭的,那么学习公平的表示导致公平的替代概念,称为准确性奇偶校验,这使得错误率在组之间关闭。最后,我们还在现实世界数据集上进行实验,以确认我们的理论发现。
translated by 谷歌翻译
针对社会福利计划中个人的干预措施的主要问题之一是歧视:个性化治疗可能导致跨年龄,性别或种族等敏感属性的差异。本文解决了公平有效的治疗分配规则的设计问题。我们采用了第一次的非遗憾视角,没有危害:我们选择了帕累托边境中最公平的分配。我们将优化投入到混合构成线性程序公式中,可以使用现成的算法来解决。我们对估计的政策功能的不公平性和在帕累托前沿的不公平保证在一般公平概念下的不公平性范围内得出了遗憾。最后,我们使用教育经济学的应用来说明我们的方法。
translated by 谷歌翻译
通常,根据某些固有的价值衡量标准,绩效是定义的。相反,我们考虑一个个人的价值为\ emph {相对}的设置:当决策者(DM)选择一组从人口中的个人来最大化预期效用时,自然考虑\ emph {预期的边际贡献}(每个人的emc)。我们表明,这个概念满足了这种环境公平性的公理定义。我们还表明,对于某些政策结构,这种公平概念与最大化的预期效用保持一致,而对于线性实用程序功能,它与Shapley值相同。但是,对于某些自然政策,例如选择具有一组特定属性的个人的政策(例如,大学入学的足够高考试成绩),精英级和公用事业最大化之间存在权衡。我们根据挪威大学的大学录取和成果,分析了限制对政策对效用和公平性的影响。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
公平性是确保机器学习(ML)预测系统不会歧视特定个人或整个子人群(尤其是少数族裔)的重要要求。鉴于观察公平概念的固有主观性,文献中已经引入了几种公平概念。本文是一项调查,说明了通过大量示例和场景之间的公平概念之间的微妙之处。此外,与文献中的其他调查不同,它解决了以下问题:哪种公平概念最适合给定的现实世界情景,为什么?我们试图回答这个问题的尝试包括(1)确定手头现实世界情景的一组与公平相关的特征,(2)分析每个公平概念的行为,然后(3)适合这两个元素以推荐每个特定设置中最合适的公平概念。结果总结在决策图中可以由从业者和政策制定者使用,以导航相对较大的ML目录。
translated by 谷歌翻译
我们研究了线性上下文的匪徒问题,其中代理必须从池中选择一个候选者,每个候选者属于敏感组。在这种情况下,候选人的奖励可能无法直接可比,例如,当代理人是雇主雇用来自不同种族的候选人时,由于歧视性偏见和/或社会不公正,有些群体的奖励较低。我们提出了一个公平的概念,该概念指出,当代理人选择一个相对排名最高的候选人时,它是公平的,这可以衡量与同一组的候选人相比,奖励的良好程度。这是一个非常强烈的公平概念,因为代理没有直接观察到相对等级,而取决于基本的奖励模型和奖励的分布。因此,我们研究了学习政策的问题,该策略在背景之间是独立的,而每个小组之间的奖励分配是绝对连续的。特别是,我们设计了一个贪婪的策略,在每个回合中,从观察到的上下文奖励对构建了脊回归估计器,然后使用经验累积分布函数计算每个候选者的相对等级的估计值。我们证明,贪婪的策略在$ t $ rounds之后达到了日志因素,并且以高概率为止,订单$ \ sqrt {dt} $的合理伪regret,其中$ d $是上下文矢量的尺寸。 The policy also satisfies demographic parity at each round when averaged over all possible information available before the selection.我们最终通过概念模拟证明,我们的政策在实践中也可以实现次线性公平伪rebret。
translated by 谷歌翻译
Virtually all machine learning tasks are characterized using some form of loss function, and "good performance" is typically stated in terms of a sufficiently small average loss, taken over the random draw of test data. While optimizing for performance on average is intuitive, convenient to analyze in theory, and easy to implement in practice, such a choice brings about trade-offs. In this work, we survey and introduce a wide variety of non-traditional criteria used to design and evaluate machine learning algorithms, place the classical paradigm within the proper historical context, and propose a view of learning problems which emphasizes the question of "what makes for a desirable loss distribution?" in place of tacit use of the expected loss.
translated by 谷歌翻译
这项工作提供了在人口统计学限制下的最佳分类函数的几种基本特征。在意识框架中,类似于经典的不受限制的分类案例,我们表明,在这种公平性约束下,最大化准确性等于解决相应的回归问题,然后在级别$ 1/2 $上进行阈值。我们将此结果扩展到线性分类分类度量(例如,$ {\ rm f} $ - 得分,AM度量,平衡准确性等),突出了回归问题在此框架中所起的基本作用。我们的结果利用了最近在人口统计学限制与多界限最佳运输公式之间建立了联系。从非正式的角度来看,我们的结果表明,通过解决公平回归问题的解决方案来代替标签的有条件期望,可以实现无约束的问题与公平问题之间的过渡。最后,利用我们的分析,我们证明了在两个敏感群体的情况下,意识和不认识的设置之间的等效性。
translated by 谷歌翻译
解决机器学习模型的公平关注是朝着实际采用现实世界自动化系统中的至关重要的一步。尽管已经开发了许多方法来从数据培训公平模型,但对这些方法对数据损坏的鲁棒性知之甚少。在这项工作中,我们考虑在最坏情况下的数据操作下进行公平意识学习。我们表明,在某些情况下,对手可能会迫使任何学习者返回过度偏见的分类器,无论样本量如何,有或没有降解的准确性,并且多余的偏见的强度会增加数据中数据不足的受保护组的学习问题,而数据中有代表性不足的组。我们还证明,我们的硬度结果紧密到不断的因素。为此,我们研究了两种自然学习算法,以优化准确性和公平性,并表明这些算法在损坏比和较大数据限制中受保护的群体频率方面享有订单最佳的保证。
translated by 谷歌翻译
最近的工作突出了因果关系在设计公平决策算法中的作用。但是,尚不清楚现有的公平因果概念如何相互关系,或者将这些定义作为设计原则的后果是什么。在这里,我们首先将算法公平性的流行因果定义组装成两个广泛的家庭:(1)那些限制决策对反事实差异的影响的家庭; (2)那些限制了法律保护特征(如种族和性别)对决策的影响。然后,我们在分析和经验上表明,两个定义的家庭\ emph {几乎总是总是} - 从一种理论意义上讲 - 导致帕累托占主导地位的决策政策,这意味着每个利益相关者都有一个偏爱的替代性,不受限制的政策从大型自然级别中绘制。例如,在大学录取决定的情况下,每位利益相关者都不支持任何对学术准备和多样性的中立或积极偏好的利益相关者,将不利于因果公平定义的政策。的确,在因果公平的明显定义下,我们证明了由此产生的政策要求承认所有具有相同概率的学生,无论学术资格或小组成员身份如何。我们的结果突出了正式的局限性和因果公平的常见数学观念的潜在不利后果。
translated by 谷歌翻译
We propose a criterion for discrimination against a specified sensitive attribute in supervised learning, where the goal is to predict some target based on available features. Assuming data about the predictor, target, and membership in the protected group are available, we show how to optimally adjust any learned predictor so as to remove discrimination according to our definition. Our framework also improves incentives by shifting the cost of poor classification from disadvantaged groups to the decision maker, who can respond by improving the classification accuracy.In line with other studies, our notion is oblivious: it depends only on the joint statistics of the predictor, the target and the protected attribute, but not on interpretation of individual features. We study the inherent limits of defining and identifying biases based on such oblivious measures, outlining what can and cannot be inferred from different oblivious tests.We illustrate our notion using a case study of FICO credit scores.
translated by 谷歌翻译
尽管大规模的经验风险最小化(ERM)在各种机器学习任务中取得了高精度,但公平的ERM受到公平限制与随机优化的不兼容的阻碍。我们考虑具有离散敏感属性以及可能需要随机求解器的可能性大型模型和数据集的公平分类问题。现有的内部处理公平算法在大规模设置中要么是不切实际的,因为它们需要在每次迭代时进行大量数据,要么不保证它们会收敛。在本文中,我们开发了第一个具有保证收敛性的随机内处理公平算法。对于人口统计学,均衡的赔率和公平的机会均等的概念,我们提供了算法的略有变化,称为Fermi,并证明这些变化中的每一个都以任何批次大小收敛于随机优化。从经验上讲,我们表明Fermi适合具有多个(非二进制)敏感属性和非二进制目标的随机求解器,即使Minibatch大小也很小,也可以很好地表现。广泛的实验表明,与最先进的基准相比,FERMI实现了所有经过测试的设置之间的公平违规和测试准确性之间最有利的权衡,该基准是人口统计学奇偶校验,均衡的赔率,均等机会,均等机会。这些好处在小批量的大小和非二元分类具有大量敏感属性的情况下尤其重要,这使得费米成为大规模问题的实用公平算法。
translated by 谷歌翻译
A recent explosion of research focuses on developing methods and tools for building fair predictive models. However, most of this work relies on the assumption that the training and testing data are representative of the target population on which the model will be deployed. However, real-world training data often suffer from selection bias and are not representative of the target population for many reasons, including the cost and feasibility of collecting and labeling data, historical discrimination, and individual biases. In this paper, we introduce a new framework for certifying and ensuring the fairness of predictive models trained on biased data. We take inspiration from query answering over incomplete and inconsistent databases to present and formalize the problem of consistent range approximation (CRA) of answers to queries about aggregate information for the target population. We aim to leverage background knowledge about the data collection process, biased data, and limited or no auxiliary data sources to compute a range of answers for aggregate queries over the target population that are consistent with available information. We then develop methods that use CRA of such aggregate queries to build predictive models that are certifiably fair on the target population even when no external information about that population is available during training. We evaluate our methods on real data and demonstrate improvements over state of the art. Significantly, we show that enforcing fairness using our methods can lead to predictive models that are not only fair, but more accurate on the target population.
translated by 谷歌翻译
机器学习中的歧视通常沿多个维度(又称保护属性)出现;因此,希望确保\ emph {交叉公平} - 即,没有任何子组受到歧视。众所周知,确保\ emph {边际公平}对于每个维度而言,独立不够。但是,由于亚组的指数数量,直接测量数据交叉公平性是不可能的。在本文中,我们的主要目标是通过统计分析详细了解边际和交叉公平之间的关系。我们首先确定一组足够的条件,在这些条件下可以获得确切的关系。然后,在一般情况下,我们证明了相交公平性的高概率的界限(通过边际公平和其他有意义的统计量很容易计算)。除了它们的描述价值之外,我们还可以利用这些理论界限来得出一种启发式,从而通过以相关的方式选择了我们描述相交子组的保护属性来改善交叉公平的近似和边界。最后,我们测试了实际和合成数据集的近似值和界限的性能。
translated by 谷歌翻译
Given an algorithmic predictor that is "fair" on some source distribution, will it still be fair on an unknown target distribution that differs from the source within some bound? In this paper, we study the transferability of statistical group fairness for machine learning predictors (i.e., classifiers or regressors) subject to bounded distribution shifts. Such shifts may be introduced by initial training data uncertainties, user adaptation to a deployed predictor, dynamic environments, or the use of pre-trained models in new settings. Herein, we develop a bound that characterizes such transferability, flagging potentially inappropriate deployments of machine learning for socially consequential tasks. We first develop a framework for bounding violations of statistical fairness subject to distribution shift, formulating a generic upper bound for transferred fairness violations as our primary result. We then develop bounds for specific worked examples, focusing on two commonly used fairness definitions (i.e., demographic parity and equalized odds) and two classes of distribution shift (i.e., covariate shift and label shift). Finally, we compare our theoretical bounds to deterministic models of distribution shift and against real-world data, finding that we are able to estimate fairness violation bounds in practice, even when simplifying assumptions are only approximately satisfied.
translated by 谷歌翻译