在这项工作中,我们研究了鲁布利地学习Mallows模型的问题。我们给出了一种算法,即使其样本的常数分数是任意损坏的恒定分数,也可以准确估计中央排名。此外,我们的稳健性保证是无关的,因为我们的整体准确性不依赖于排名的替代品的数量。我们的工作可以被认为是从算法稳健统计到投票和信息聚集中的中央推理问题之一的视角的自然输注。具体而言,我们的投票规则是有效的可计算的,并且通过一大群勾结的选民无法改变其结果。
translated by 谷歌翻译
在这项工作中,我们解决了从$ \ epsilon $ -corrupted样本的$ k $组件稳健地学习高斯高斯混合模型的问题,以准确率$ \ widetilde {o}(\ epsilon)在总变化距离中持续$ k $,并在混合物上具有温和的假设。这种稳健性保证是最佳的积极因素因素。主要挑战是,大多数早期的作品依赖于在混合中学习各个组件,但在我们的环境中是不可能的,至少对于我们旨在保证的强大稳健性的类型是不可能的。相反,我们介绍了一个新的框架,我们称之为{\ em强烈的可观察性},这为我们提供了一条规避这障碍的途径。
translated by 谷歌翻译
我们考虑了在高维度中平均分离的高斯聚类混合物的问题。我们是从$ k $身份协方差高斯的混合物提供的样本,使任何两对手段之间的最小成对距离至少为$ \ delta $,对于某些参数$ \ delta> 0 $,目标是恢复这些样本的地面真相聚类。它是分离$ \ delta = \ theta(\ sqrt {\ log k})$既有必要且足以理解恢复良好的聚类。但是,实现这种担保的估计值效率低下。我们提供了在多项式时间内运行的第一算法,几乎符合此保证。更确切地说,我们给出了一种算法,它需要多项式许多样本和时间,并且可以成功恢复良好的聚类,只要分离为$ \ delta = \ oomega(\ log ^ {1/2 + c} k)$ ,任何$ c> 0 $。以前,当分离以k $的分离和可以容忍$ \ textsf {poly}(\ log k)$分离所需的quasi arynomial时间时,才知道该问题的多项式时间算法。我们还将我们的结果扩展到分布的分布式的混合物,该分布在额外的温和假设下满足Poincar \ {e}不等式的分布。我们认为我们相信的主要技术工具是一种新颖的方式,可以隐含地代表和估计分配的​​高度时刻,这使我们能够明确地提取关于高度时刻的重要信息而没有明确地缩小全瞬间张量。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
在这项工作中,我们研究了具有对抗性节点损坏的随机块模型中社区发现的问题。我们的主要结果是一种有效的算法,该算法可以忍受$ \ epsilon $ - 损坏和达到错误$ o(\ epsilon) + e^{ - \ frac {c} {2} {2}(1 \ pm o(1))} $其中$ c =(\ sqrt {a} - \ sqrt {b})^2 $是信噪比,$ a/n $和$ b/n $是互发和intra-intra-intra-社区连接概率分别。这些界限基本上与无损坏的SBM的最小值相匹配。我们还为$ \ mathbb {z} _2 $ -Synchronization提供了可靠的算法。我们算法的核心是一个新的半决赛程序,它使用全局信息来鲁棒提高粗糙聚类的准确性。此外,我们表明我们的算法是双重的,因为它们在更具挑战性的噪声模型中起作用,该模型将对抗性腐败与无限制的单调变化混合在一起,从半随机模型中。
translated by 谷歌翻译
In this work, we give efficient algorithms for privately estimating a Gaussian distribution in both pure and approximate differential privacy (DP) models with optimal dependence on the dimension in the sample complexity. In the pure DP setting, we give an efficient algorithm that estimates an unknown $d$-dimensional Gaussian distribution up to an arbitrary tiny total variation error using $\widetilde{O}(d^2 \log \kappa)$ samples while tolerating a constant fraction of adversarial outliers. Here, $\kappa$ is the condition number of the target covariance matrix. The sample bound matches best non-private estimators in the dependence on the dimension (up to a polylogarithmic factor). We prove a new lower bound on differentially private covariance estimation to show that the dependence on the condition number $\kappa$ in the above sample bound is also tight. Prior to our work, only identifiability results (yielding inefficient super-polynomial time algorithms) were known for the problem. In the approximate DP setting, we give an efficient algorithm to estimate an unknown Gaussian distribution up to an arbitrarily tiny total variation error using $\widetilde{O}(d^2)$ samples while tolerating a constant fraction of adversarial outliers. Prior to our work, all efficient approximate DP algorithms incurred a super-quadratic sample cost or were not outlier-robust. For the special case of mean estimation, our algorithm achieves the optimal sample complexity of $\widetilde O(d)$, improving on a $\widetilde O(d^{1.5})$ bound from prior work. Our pure DP algorithm relies on a recursive private preconditioning subroutine that utilizes the recent work on private mean estimation [Hopkins et al., 2022]. Our approximate DP algorithms are based on a substantial upgrade of the method of stabilizing convex relaxations introduced in [Kothari et al., 2022].
translated by 谷歌翻译
We study the fundamental task of outlier-robust mean estimation for heavy-tailed distributions in the presence of sparsity. Specifically, given a small number of corrupted samples from a high-dimensional heavy-tailed distribution whose mean $\mu$ is guaranteed to be sparse, the goal is to efficiently compute a hypothesis that accurately approximates $\mu$ with high probability. Prior work had obtained efficient algorithms for robust sparse mean estimation of light-tailed distributions. In this work, we give the first sample-efficient and polynomial-time robust sparse mean estimator for heavy-tailed distributions under mild moment assumptions. Our algorithm achieves the optimal asymptotic error using a number of samples scaling logarithmically with the ambient dimension. Importantly, the sample complexity of our method is optimal as a function of the failure probability $\tau$, having an additive $\log(1/\tau)$ dependence. Our algorithm leverages the stability-based approach from the algorithmic robust statistics literature, with crucial (and necessary) adaptations required in our setting. Our analysis may be of independent interest, involving the delicate design of a (non-spectral) decomposition for positive semi-definite matrices satisfying certain sparsity properties.
translated by 谷歌翻译
我们重新审视量子状态认证的基本问题:给定混合状态$ \ rho \中的副本\ mathbb {c} ^ {d \ times d} $和混合状态$ \ sigma $的描述,决定是否$ \ sigma = \ rho $或$ \ | \ sigma - \ rho \ | _ {\ mathsf {tr}} \ ge \ epsilon $。当$ \ sigma $最大化时,这是混合性测试,众所周知,$ \ omega(d ^ {\ theta(1)} / \ epsilon ^ 2)$副本是必要的,所以确切的指数取决于测量类型学习者可以使[OW15,BCL20],并且在许多这些设置中,有一个匹配的上限[OW15,Bow19,BCL20]。可以避免这种$ d ^ {\ theta(1)} $依赖于某些类型的混合状态$ \ sigma $,例如。大约低等级的人?更常见地,是否存在一个简单的功能$ f:\ mathbb {c} ^ {d \ times d} \ to \ mathbb {r} _ {\ ge 0} $,其中一个人可以显示$ \ theta(f( \ sigma)/ \ epsilon ^ 2)$副本是必要的,并且足以就任何$ \ sigma $的国家认证?这种实例 - 最佳边界在经典分布测试的背景下是已知的,例如, [VV17]。在这里,我们为量子设置提供了这个性质的第一个界限,显示(达到日志因子),即使用非接受不连贯测量的状态认证的复杂性复杂性基本上是通过复制复杂性进行诸如$ \ sigma $之间的保真度的复杂性。和最大混合的状态。令人惊讶的是,我们的界限与经典问题的实例基本上不同,展示了两个设置之间的定性差异。
translated by 谷歌翻译
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
translated by 谷歌翻译
我们研究了测试有序域上的离散概率分布是否是指定数量的垃圾箱的直方图。$ k $的简洁近似值的最常见工具之一是$ k $ [n] $,是概率分布,在一组$ k $间隔上是分段常数的。直方图测试问题如下:从$ [n] $上的未知分布中给定样品$ \ mathbf {p} $,我们想区分$ \ mathbf {p} $的情况从任何$ k $ - 组织图中,总变化距离的$ \ varepsilon $ -far。我们的主要结果是针对此测试问题的样本接近最佳和计算有效的算法,以及几乎匹配的(在对数因素内)样品复杂性下限。具体而言,我们表明直方图测试问题具有样品复杂性$ \ widetilde \ theta(\ sqrt {nk} / \ varepsilon + k / \ varepsilon^2 + \ sqrt {n} / \ varepsilon^2)$。
translated by 谷歌翻译
我们给出了\ emph {list-codobable协方差估计}的第一个多项式时间算法。对于任何$ \ alpha> 0 $,我们的算法获取输入样本$ y \ subseteq \ subseteq \ mathbb {r}^d $ size $ n \ geq d^{\ mathsf {poly}(1/\ alpha)} $获得通过对抗损坏I.I.D的$(1- \ alpha)n $点。从高斯分布中的样本$ x $ size $ n $,其未知平均值$ \ mu _*$和协方差$ \ sigma _*$。在$ n^{\ mathsf {poly}(1/\ alpha)} $ time中,它输出$ k = k(\ alpha)=(1/\ alpha)^{\ mathsf {poly}的常数大小列表(1/\ alpha)} $候选参数,具有高概率,包含$(\ hat {\ mu},\ hat {\ sigma})$,使得总变化距离$ tv(\ Mathcal {n}(n})(n}(n})( \ mu _*,\ sigma _*),\ Mathcal {n}(\ hat {\ mu},\ hat {\ sigma}))<1-o _ {\ alpha}(1)$。这是距离的统计上最强的概念,意味着具有独立尺寸误差的参数的乘法光谱和相对Frobenius距离近似。我们的算法更普遍地适用于$(1- \ alpha)$ - 任何具有低度平方总和证书的分布$ d $的损坏,这是两个自然分析属性的:1)一维边际和抗浓度2)2度多项式的超收缩率。在我们工作之前,估计可定性设置的协方差的唯一已知结果是针对Karmarkar,Klivans和Kothari(2019),Raghavendra和Yau(2019和2019和2019和2019和2019年)的特殊情况。 2020年)和巴克西(Bakshi)和科塔里(Kothari)(2020年)。这些结果需要超级物理时间,以在基础维度中获得任何子构误差。我们的结果意味着第一个多项式\ emph {extcect}算法,用于列表可解码的线性回归和子空间恢复,尤其允许获得$ 2^{ - \ Mathsf { - \ Mathsf {poly}(d)} $多项式时间错误。我们的结果还意味着改进了用于聚类非球体混合物的算法。
translated by 谷歌翻译
We establish a simple connection between robust and differentially-private algorithms: private mechanisms which perform well with very high probability are automatically robust in the sense that they retain accuracy even if a constant fraction of the samples they receive are adversarially corrupted. Since optimal mechanisms typically achieve these high success probabilities, our results imply that optimal private mechanisms for many basic statistics problems are robust. We investigate the consequences of this observation for both algorithms and computational complexity across different statistical problems. Assuming the Brennan-Bresler secret-leakage planted clique conjecture, we demonstrate a fundamental tradeoff between computational efficiency, privacy leakage, and success probability for sparse mean estimation. Private algorithms which match this tradeoff are not yet known -- we achieve that (up to polylogarithmic factors) in a polynomially-large range of parameters via the Sum-of-Squares method. To establish an information-computation gap for private sparse mean estimation, we also design new (exponential-time) mechanisms using fewer samples than efficient algorithms must use. Finally, we give evidence for privacy-induced information-computation gaps for several other statistics and learning problems, including PAC learning parity functions and estimation of the mean of a multivariate Gaussian.
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
我们研究了清单可解放的平均估计问题,而对手可能会破坏大多数数据集。具体来说,我们在$ \ mathbb {r} ^ $和参数$ 0 <\ alpha <\ frac 1 2 $中给出了一个$ $ n $ points的$ t $ points。$ \ alpha $ -flaction的点$ t $是iid来自乖巧的分发$ \ Mathcal {D} $的样本,剩余的$(1- \ alpha)$ - 分数是任意的。目标是输出小型的vectors列表,其中至少一个接近$ \ mathcal {d} $的均值。我们开发新的算法,用于列出可解码的平均值估计,实现几乎最佳的统计保证,运行时间$ O(n ^ {1 + \ epsilon_0} d)$,适用于任何固定$ \ epsilon_0> 0 $。所有先前的此问题算法都有额外的多项式因素在$ \ frac 1 \ alpha $。我们与额外技术一起利用此结果,以获得用于聚类混合物的第一个近几个线性时间算法,用于分开的良好表现良好的分布,几乎匹配谱方法的统计保证。先前的聚类算法本身依赖于$ k $ -pca的应用程序,从而产生$ \ omega(n d k)$的运行时。这标志着近二十年来这个基本统计问题的第一次运行时间改进。我们的方法的起点是基于单次矩阵乘法权重激发电位减少的$ \ Alpha \至1 $制度中的新颖和更简单的近线性时间较强的估计算法。在Diakonikolas等人的迭代多滤波技术的背景下,我们迫切地利用了这种新的算法框架。 '18,'20,提供一种使用一维投影的同时群集和下群点的方法 - 因此,绕过先前算法所需的$ k $ -pca子程序。
translated by 谷歌翻译
我们为高维分布的身份测试提供了改进的差异私有算法。具体来说,对于带有已知协方差$ \ sigma $的$ d $二维高斯分布,我们可以测试该分布是否来自$ \ Mathcal {n}(\ mu^*,\ sigma)$,对于某些固定$ \ mu^** $或从某个$ \ MATHCAL {n}(\ mu,\ sigma)$,总变化距离至少$ \ alpha $ from $ \ mathcal {n}(\ mu^*,\ sigma)$(\ varepsilon) ,0)$ - 微分隐私,仅使用\ [\ tilde {o} \ left(\ frac {d^{1/2}}} {\ alpha^2} + \ frac {d^{1/3}} {1/3}} { \ alpha^{4/3} \ cdot \ varepsilon^{2/3}}} + \ frac {1} {\ alpha \ cdot \ cdot \ cdot \ varepsilon} \ right)\]唯一\ [\ tilde {o} \ left(\ frac {d^{1/2}}} {\ alpha^2} + \ frac {d^{1/4}} {\ alpha \ alpha \ cdot \ cdot \ cdot \ varepsilon} \ right )\]用于计算有效算法的样品。我们还提供了一个匹配的下限,表明我们的计算效率低下的算法具有最佳的样品复杂性。我们还将算法扩展到各种相关问题,包括对具有有限但未知协方差的高斯人的平均测试,对$ \ { - 1,1,1 \}^d $的产品分布的均匀性测试以及耐受性测试。我们的结果改善了Canonne等人的先前最佳工作。 (\ frac {\ sqrt {d}} {\ alpha^2} \ right)$在许多标准参数设置中。此外,我们的结果表明,令人惊讶的是,可以使用$ d $二维高斯的私人身份测试,可以用少于离散分布的私人身份测试尺寸$ d $ \ cite {actharyasz18}的私人身份测试来完成,以重组猜测〜\ cite {canonnekmuz20}的下限。
translated by 谷歌翻译
在这里,我们重新审视线性二次估计的经典问题,即估计线性动力系统从嘈杂测量的轨迹。当测量噪声是高斯时,庆祝的卡尔曼滤波器提供了最佳估计器,但是当一个人偏离这种假设时,广泛众所周知,众所周知会破裂。当噪音重尾时。许多临时启发式机启发式就是处理异常值的实践中。在开创性的工作中,Schick和Mitter在测量噪声是高斯的已知无穷无尽的扰动时给予了可证明的保证,并提出了一个可以获得类似的禁令的重要担保的重要问题。在这项工作中,我们给出了一个真正强大的过滤器:当甚至恒定的测量分数都存在对比腐败时,我们给出了线性二次估计的第一个强化保证。该框架可以模拟重型且甚至是非静止噪声过程。我们的算法在与知道损坏位置的最佳算法竞争的意义上强调了卡尔曼过滤器。我们的作品处于挑战性的贝叶斯环境,其中测量数量与我们需要估计的复杂性缩放。此外,在线性动态系统中过去信息随时间衰减。我们开发了一套新技术,以强大地提取不同时间步长和不同时间尺度的信息。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
Robust mean estimation is one of the most important problems in statistics: given a set of samples in $\mathbb{R}^d$ where an $\alpha$ fraction are drawn from some distribution $D$ and the rest are adversarially corrupted, we aim to estimate the mean of $D$. A surge of recent research interest has been focusing on the list-decodable setting where $\alpha \in (0, \frac12]$, and the goal is to output a finite number of estimates among which at least one approximates the target mean. In this paper, we consider that the underlying distribution $D$ is Gaussian with $k$-sparse mean. Our main contribution is the first polynomial-time algorithm that enjoys sample complexity $O\big(\mathrm{poly}(k, \log d)\big)$, i.e. poly-logarithmic in the dimension. One of our core algorithmic ingredients is using low-degree sparse polynomials to filter outliers, which may find more applications.
translated by 谷歌翻译
鉴于$ n $ i.i.d.从未知的分发$ P $绘制的样本,何时可以生成更大的$ n + m $ samples,这些标题不能与$ n + m $ i.i.d区别区别。从$ p $绘制的样品?(AXELROD等人2019)将该问题正式化为样本放大问题,并为离散分布和高斯位置模型提供了最佳放大程序。然而,这些程序和相关的下限定制到特定分布类,对样本扩增的一般统计理解仍然很大程度上。在这项工作中,我们通过推出通常适用的放大程序,下限技术和与现有统计概念的联系来放置对公司统计基础的样本放大问题。我们的技术适用于一大类分布,包括指数家庭,并在样本放大和分配学习之间建立严格的联系。
translated by 谷歌翻译
我们开发了一种高效的随机块模型中的弱恢复算法。该算法与随机块模型的Vanilla版本的最佳已知算法的统计保证匹配。从这个意义上讲,我们的结果表明,随机块模型没有稳健性。我们的工作受到最近的银行,Mohanty和Raghavendra(SODA 2021)的工作,为相应的区别问题提供了高效的算法。我们的算法及其分析显着脱离了以前的恢复。关键挑战是我们算法的特殊优化景观:种植的分区可能远非最佳意义,即完全不相关的解决方案可以实现相同的客观值。这种现象与PCA的BBP相转变的推出效应有关。据我们所知,我们的算法是第一个在非渐近设置中存在这种推出效果的鲁棒恢复。我们的算法是基于凸优化的框架的实例化(与平方和不同的不同),这对于其他鲁棒矩阵估计问题可能是有用的。我们的分析的副产物是一种通用技术,其提高了任意强大的弱恢复算法的成功(输入的随机性)从恒定(或缓慢消失)概率以指数高概率。
translated by 谷歌翻译