We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary in their physical parameters. The iMODE method learns meta-knowledge, the functional variations of the force field of dynamical system instances without knowing the physical parameters, by adopting a bi-level optimization framework: an outer level capturing the common force field form among studied dynamical system instances and an inner level adapting to individual system instances. A priori physical knowledge can be conveniently embedded in the neural network architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the learned meta-knowledge, iMODE can model an unseen system within seconds, and inversely reveal knowledge on the physical parameters of a system, or as a Neural Gauge to "measure" the physical parameters of an unseen system with observed trajectories. We test the validity of the iMODE method on bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
建模物理系统的数据驱动方法无法推广到与学习域共享相同一般动态的看不见的系统,但与不同的物理环境相对应。我们为此关键问题提出了一个新的框架,即上下文知识的动态适应(CODA),该框架考虑了整个系统之间的分布转移,以快速有效地适应新的动力学。 CODA利用多个环境,每个环境都与不同的动态相关联,并学会将动态模型定为上下文参数(特定于每个环境)。调节是通过超网络进行的,并从观察到的数据与上下文向量共同学习。提出的公式限制了搜索假设空间,以促进跨环境的快速适应和更好的概括。我们从理论上激励我们的方法,并在一组非线性动力学上显示出最新的概括结果,这是多种应用领域的代​​表。我们还在这些系统上还显示,可以从上下文向量中推断出新的系统参数,并以最小的监督为准。
translated by 谷歌翻译
我们研究了科学计算的数值算法的元学习,它将一般算法结构的数学驱动,手工设计与特定的任务类的数据驱动的适应相结合。这表示从数值分析中的经典方法的偏离,这通常不具有这种基于学习的自适应。作为一个案例研究,我们开发了一种机器学习方法,基于Runge-Kutta(RK)Integrator架构,自动学习用于常用方程式(ODES)形式的初始值问题的有效求解器。通过组合神经网络近似和元学习,我们表明我们可以获得针对目标差分方程系的高阶集成商,而无需手头计算积分器系数。此外,我们证明,在某些情况下,我们可以获得古典RK方法的卓越性能。这可以归因于通过该方法识别和利用ode系列的某些属性。总的来说,这项工作展示了基于学习的基于学习的方法,用于设计差分方程的数值解的算法,一种方法可以容易地扩展到其他数值任务。
translated by 谷歌翻译
从非线性系统中提取预测模型是科学机器学习中的一个中心任务。一个关键问题是现代数据驱动方法与第一个原则之间的对帐。尽管机器学习技术快速进展,但将域知识嵌入到数据驱动的模型中仍然是一个挑战。在这项工作中,我们为基于观察的非线性系统提取了一个通用学习框架,用于从非线性系统中提取预测模型。我们的框架可以容易地纳入第一个原理知识,因为它自然地模拟非线性系统作为连续时间系统。这两种都改善了提取的模型的外推功率,并减少了培训所需的数据量。此外,我们的框架还具有对观察噪声的稳健和适用性的优点,不规则采样数据。我们通过学习各种系统的预测模型来展示我们方案的有效性,包括普拉登·德隆振荡器,Lorenz系统和Kuramoto-Sivashinsky方程。对于Lorenz系统,并入不同类型的域知识,以展示数据驱动系统识别中的知识强度。
translated by 谷歌翻译
众所周知,混乱的系统对预测的挑战是挑战,因为它们对时间的敏感性和由于阶梯时间而引起的错误和错误。尽管这种不可预测的行为,但对于许多耗散系统,长期轨迹的统计数据仍受到一套被称为全球吸引子的不变措施的管辖。对于许多问题,即使状态空间是无限的维度,该集合是有限维度的。对于马尔可夫系统,长期轨迹的统计特性由解决方案操作员唯一确定,该解决方案操作员将系统的演变映射到任意正时间增量上。在这项工作中,我们提出了一个机器学习框架,以学习耗散混沌系统的基础解决方案操作员,这表明所得的学习操作员准确地捕获了短期轨迹和长期统计行为。使用此框架,我们能够预测湍流Kolmogorov流动动力学的各种统计数据,雷诺数为5000。
translated by 谷歌翻译
Deep operator networks (DeepONets) are powerful architectures for fast and accurate emulation of complex dynamics. As their remarkable generalization capabilities are primarily enabled by their projection-based attribute, we investigate connections with low-rank techniques derived from the singular value decomposition (SVD). We demonstrate that some of the concepts behind proper orthogonal decomposition (POD)-neural networks can improve DeepONet's design and training phases. These ideas lead us to a methodology extension that we name SVD-DeepONet. Moreover, through multiple SVD analyses, we find that DeepONet inherits from its projection-based attribute strong inefficiencies in representing dynamics characterized by symmetries. Inspired by the work on shifted-POD, we develop flexDeepONet, an architecture enhancement that relies on a pre-transformation network for generating a moving reference frame and isolating the rigid components of the dynamics. In this way, the physics can be represented on a latent space free from rotations, translations, and stretches, and an accurate projection can be performed to a low-dimensional basis. In addition to flexibility and interpretability, the proposed perspectives increase DeepONet's generalization capabilities and computational efficiencies. For instance, we show flexDeepONet can accurately surrogate the dynamics of 19 variables in a combustion chemistry application by relying on 95% less trainable parameters than the ones of the vanilla architecture. We argue that DeepONet and SVD-based methods can reciprocally benefit from each other. In particular, the flexibility of the former in leveraging multiple data sources and multifidelity knowledge in the form of both unstructured data and physics-informed constraints has the potential to greatly extend the applicability of methodologies such as POD and PCA.
translated by 谷歌翻译
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
translated by 谷歌翻译
Recent studies to learn physical laws via deep learning attempt to find the shared representation of the given system by introducing physics priors or inductive biases to the neural network. However, most of these approaches tackle the problem in a system-specific manner, in which one neural network trained to one particular physical system cannot be easily adapted to another system governed by a different physical law. In this work, we use a meta-learning algorithm to identify the general manifold in neural networks that represents Hamilton's equation. We meta-trained the model with the dataset composed of five dynamical systems each governed by different physical laws. We show that with only a few gradient steps, the meta-trained model adapts well to the physical system which was unseen during the meta-training phase. Our results suggest that the meta-trained model can craft the representation of Hamilton's equation in neural networks which is shared across various dynamical systems with each governed by different physical laws.
translated by 谷歌翻译
部分微分方程(PDES)在科学和工程的许多学科中都是普遍的,难以解决。通常,PDE的闭合形式溶液不可用,数值近似方法是计算昂贵的。 PDE的参数在许多应用中是可变的,例如逆问题,控制和优化,风险评估和不确定性量化。在这些应用程序中,我们的目标是解决参数PDE而不是其中一个实例。我们所提出的方法,称为元 - 自动解码器(MAD),将参数PDES作为元学习问题求解,并利用\ Cite {Park2019DeepsDF}中的自动解码器结构来处理不同的任务/ PDE。从PDE管理方程和边界条件诱导的物理知识损失被用作不同任务的培训损失。疯狂的目标是学习一个良好的模型初始化,可以概括不同的任务,最终使未能学习的任务能够更快地学习。疯狂的灵感来自于(猜想)参数PDE解决方案的低维结构,并从流形学习的角度解释了我们的方法。最后,我们展示了疯狂的力量,虽然广泛的数值研究,包括汉堡等式,拉普尔斯方程和时域麦克斯韦方程。与其他深度学习方法相比,MAD表现出更快的收敛速度而不会失去准确性。
translated by 谷歌翻译
用神经网络对物理系统的动力学建模的最新方法强制执行拉格朗日式或哈密顿结构,以改善预测和泛化。但是,当将坐标嵌入高维数据(例如图像)中时,这些方法要么失去解释性,要么只能应用于一个特定示例。我们介绍了一种新的无监督神经网络模型,该模型从图像中学习拉格朗日动态,并具有受益于预测和控制的解释性。该模型在广义坐标上渗透Lagrangian动力学,这些动力学是通过坐标感知的变异自动编码器(VAE)同时学习的。 VAE旨在说明由飞机中多个刚体组成的物理系统的几何形状。通过推断可解释的拉格朗日动力学,该模型学习了物理系统属性,例如动力学和势能,从而可以长期预测图像空间中的动力学和基于能量控制器的合成。
translated by 谷歌翻译
动态模型是我们理解和预测自然系统行为的能力。无论是从第一原理推导还是从观察数据开发的动力模型,它们都基于我们选择状态变量。状态变量的选择是由便利性和直觉驱动的,在数据​​驱动的情况下,观察到的变量通常被选择为状态变量。这些变量的维度(以及动态模型)可以任意大,从而掩盖了系统的基本行为。实际上,这些变量通常是高度冗余的,并且该系统是由一组潜在的内在变量集驱动的。在这项研究中,我们将流形的数学理论与神经网络的代表能力相结合,以开发一种方法,该方法直接从时间序列数据中学习了系统的内在状态变量,还可以学习其动力学的预测模型。我们方法的区别在于,它有能力将数据减少到其居住的非线性流形的固有维度。从流形理论中的图表和地图集的概念可以实现这种能力,从而使歧管由缝制在一起的贴片的集合表示,这是获得内在维度的必要表示。我们在几个具有低维行为的高维系统上证明了这种方法。最终的框架提供了开发最低维度的动态模型的能力,从而捕获了系统的本质。
translated by 谷歌翻译
最近,与神经网络的时间相关微分方程的解决方案最近引起了很多关注。核心思想是学习控制解决方案从数据演变的法律,该数据可能会被随机噪声污染。但是,与其他机器学习应用相比,通常对手头的系统了解很多。例如,对于许多动态系统,诸如能量或(角度)动量之类的物理量是完全保守的。因此,神经网络必须从数据中学习这些保护定律,并且仅由于有限的训练时间和随机噪声而被满足。在本文中,我们提出了一种替代方法,该方法使用Noether的定理将保护定律本质地纳入神经网络的体系结构。我们证明,这可以更好地预测三个模型系统:在三维牛顿引力潜能中非偏见粒子的运动,Schwarzschild指标中庞大的相对论粒子的运动和两个相互作用的粒子在四个相互作用的粒子系统中的运动方面。
translated by 谷歌翻译
机器人动态的准确模型对于新颖的操作条件安全和稳定控制和概括至关重要。然而,即使在仔细参数调谐后,手工设计的模型也可能是不够准确的。这激励了使用机器学习技术在训练集的状态控制轨迹上近似机器人动力学。根据其SE(3)姿势和广义速度,并满足能量原理的保护,描述了许多机器人的动态,包括地面,天线和水下车辆。本文提出了在神经常规差分方程(ODE)网络结构的SE(3)歧管上的HamiltonIAN制剂,以近似刚体的动态。与黑匣子颂网络相比,我们的配方通过施工保证了总节能。我们为学习的学习,潜在的SE(3)Hamiltonian动力学开发能量整形和阻尼注射控制,以实现具有各种平台的稳定和轨迹跟踪的统一方法,包括摆锤,刚体和四极其系统。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
物理系统通常表示为粒子的组合,即控制系统动力学的个体动力学。但是,传统方法需要了解几个抽象数量的知识,例如推断这些颗粒动力学的能量或力量。在这里,我们提出了一个框架,即拉格朗日图神经网络(LGNN),它提供了强烈的感应偏见,可以直接从轨迹中学习基于粒子系统的拉格朗日。我们在具有约束和阻力的挑战系统上测试我们的方法 - LGNN优于诸如前馈拉格朗日神经网络(LNN)等基线,其性能提高。我们还通过模拟系统模拟系统的两个数量级比受过训练的一个数量级和混合系统大的数量级来显示系统的零弹性通用性,这些数量级是一个独特的功能。与LNN相比,LGNN的图形体系结构显着简化了学习,其性能在少量少量数据上的性能高25倍。最后,我们显示了LGNN的解释性,该解释性直接提供了对模型学到的阻力和约束力的物理见解。因此,LGNN可以为理解物理系统的动力学提供纯粹的填充,这纯粹是从可观察的数量中。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
通过离散采样观测来建模连续的动力系统是数据科学中的一个基本问题。通常,这种动力学是非本地过程随时间不可或缺的结果。因此,这些系统是用插差分化方程(IDE)建模的;构成积分和差分组件的微分方程的概括。例如,大脑动力学不是通过微分方程来准确模拟的,因为它们的行为是非马克维亚的,即动态是部分由历史决定的。在这里,我们介绍了神经IDE(NIDE),该框架使用神经网络建模IDE的普通和组成部分。我们在几个玩具和大脑活动数据集上测试NIDE,并证明NIDE的表现优于其他模型,包括神经ODE。这些任务包括时间外推,以及从看不见的初始条件中预测动态,我们在自由行为的小鼠中测试了全皮质活动记录。此外,我们表明,NIDE可以通过学识渊博的整体操作员将动力学分解为马尔可夫和非马克维亚成分,我们在氯胺酮的fMRI脑活动记录中测试了动力学。最后,整体操作员的整体提供了一个潜在空间,可深入了解潜在的动态,我们在宽阔的大脑成像记录上证明了这一点。总体而言,NIDE是一种新颖的方法,可以通过神经网络对复杂的非本地动力学进行建模。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
Identifying coordinate transformations that make strongly nonlinear dynamics approximately linear is a central challenge in modern dynamical systems. These transformations have the potential to enable prediction, estimation, and control of nonlinear systems using standard linear theory. The Koopman operator has emerged as a leading data-driven embedding, as eigenfunctions of this operator provide intrinsic coordinates that globally linearize the dynamics. However, identifying and representing these eigenfunctions has proven to be mathematically and computationally challenging. This work leverages the power of deep learning to discover representations of Koopman eigenfunctions from trajectory data of dynamical systems. Our network is parsimonious and interpretable by construction, embedding the dynamics on a low-dimensional manifold parameterized by these eigenfunctions. In particular, we identify nonlinear coordinates on which the dynamics are globally linear using a modified auto-encoder. We also generalize Koopman representations to include a ubiquitous class of systems that exhibit continuous spectra, ranging from the simple pendulum to nonlinear optics and broadband turbulence. Our framework parametrizes the continuous frequency using an auxiliary network, enabling a compact and efficient embedding, while connecting our models to half a century of asymptotics. In this way, we benefit from the power and generality of deep learning, while retaining the physical interpretability of Koopman embeddings.
translated by 谷歌翻译