动态模型是我们理解和预测自然系统行为的能力。无论是从第一原理推导还是从观察数据开发的动力模型,它们都基于我们选择状态变量。状态变量的选择是由便利性和直觉驱动的,在数据​​驱动的情况下,观察到的变量通常被选择为状态变量。这些变量的维度(以及动态模型)可以任意大,从而掩盖了系统的基本行为。实际上,这些变量通常是高度冗余的,并且该系统是由一组潜在的内在变量集驱动的。在这项研究中,我们将流形的数学理论与神经网络的代表能力相结合,以开发一种方法,该方法直接从时间序列数据中学习了系统的内在状态变量,还可以学习其动力学的预测模型。我们方法的区别在于,它有能力将数据减少到其居住的非线性流形的固有维度。从流形理论中的图表和地图集的概念可以实现这种能力,从而使歧管由缝制在一起的贴片的集合表示,这是获得内在维度的必要表示。我们在几个具有低维行为的高维系统上证明了这种方法。最终的框架提供了开发最低维度的动态模型的能力,从而捕获了系统的本质。
translated by 谷歌翻译
我们开发了包含几何信息和拓扑信息的数据驱动方法,以从观察值中学习非线性动力学的简约表示。我们开发了使用与变异自动编码器(VAE)相关的训练策略来学习一般歧管潜在空间动力学的非线性状态空间模型的方法。我们的方法称为几何动力学(GD)变化自动编码器(GD-VAE)。我们根据包括一般多层感知器(MLP),卷积神经网络(CNNS)和转置CNN(T-CNN)在内的深层神经网络体系结构学习系统状态和进化的编码器和分解器。由参数化的PDE和物理学引起的问题的促进,我们研究了我们在学习非线性汉堡方程,约束机械系统和反应扩散系统的空间场的低维表示任务方面的性能。 GD-VAE提供了用于获取表示涉及动态任务的表示形式的方法。
translated by 谷歌翻译
我们开发一种方法来构造来自表示基本上非线性(或不可连锁的)动态系统的数据集构成低维预测模型,其中具有由有限许多频率的外部强制进行外部矫正的双曲线线性部分。我们的数据驱动,稀疏,非线性模型获得为低维,吸引动力系统的光谱子纤维(SSM)的降低的动态的延长正常形式。我们说明了数据驱动的SSM降低了高维数值数据集的功率和涉及梁振荡,涡旋脱落和水箱中的晃动的实验测量。我们发现,在未加工的数据上培训的SSM减少也在额外的外部强制下准确预测非线性响应。
translated by 谷歌翻译
在许多科学学科中,我们有兴趣推断一组观察到的时间序列的非线性动力学系统,这是面对混乱的行为和噪音,这是一项艰巨的任务。以前的深度学习方法实现了这一目标,通常缺乏解释性和障碍。尤其是,即使基本动力学生存在较低维的多种多样的情况下,忠实嵌入通常需要的高维潜在空间也会阻碍理论分析。在树突计算的新兴原则的推动下,我们通过线性样条基础扩展增强了动态解释和数学可牵引的分段线性(PL)复发性神经网络(RNN)。我们表明,这种方法保留了简单PLRNN的所有理论上吸引人的特性,但在相对较低的尺寸中提高了其近似任意非线性动态系统的能力。我们采用两个框架来训练该系统,一个将反向传播的时间(BPTT)与教师强迫结合在一起,另一个将基于快速可扩展的变异推理的基础。我们表明,树枝状扩展的PLRNN可以在各种动力学系统基准上获得更少的参数和尺寸,并与其他方法进行比较,同时保留了可拖动和可解释的结构。
translated by 谷歌翻译
高维时空动力学通常可以在低维子空间中编码。用于建模,表征,设计和控制此类大规模系统的工程应用通常依赖于降低尺寸,以实时计算解决方案。降低维度的常见范例包括线性方法,例如奇异值分解(SVD)和非线性方法,例如卷积自动编码器(CAE)的变体。但是,这些编码技术缺乏有效地表示与时空数据相关的复杂性的能力,后者通常需要可变的几何形状,非均匀的网格分辨率,自适应网格化和/或参数依赖性。为了解决这些实用的工程挑战,我们提出了一个称为神经隐式流(NIF)的一般框架,该框架可以实现大型,参数,时空数据的网格不稳定,低级别表示。 NIF由两个修改的多层感知器(MLP)组成:(i)shapenet,它分离并代表空间复杂性,以及(ii)参数,该参数解释了任何其他输入复杂性,包括参数依赖关系,时间和传感器测量值。我们演示了NIF用于参数替代建模的实用性,从而实现了复杂时空动力学的可解释表示和压缩,有效的多空间质量任务以及改善了稀疏重建的通用性能。
translated by 谷歌翻译
众所周知,混乱的系统对预测的挑战是挑战,因为它们对时间的敏感性和由于阶梯时间而引起的错误和错误。尽管这种不可预测的行为,但对于许多耗散系统,长期轨迹的统计数据仍受到一套被称为全球吸引子的不变措施的管辖。对于许多问题,即使状态空间是无限的维度,该集合是有限维度的。对于马尔可夫系统,长期轨迹的统计特性由解决方案操作员唯一确定,该解决方案操作员将系统的演变映射到任意正时间增量上。在这项工作中,我们提出了一个机器学习框架,以学习耗散混沌系统的基础解决方案操作员,这表明所得的学习操作员准确地捕获了短期轨迹和长期统计行为。使用此框架,我们能够预测湍流Kolmogorov流动动力学的各种统计数据,雷诺数为5000。
translated by 谷歌翻译
我们确定有效的随机微分方程(SDE),用于基于精细的粒子或基于试剂的模拟的粗糙观察结果;然后,这些SDE提供了精细规模动力学的有用的粗替代模型。我们通过神经网络近似这些有效的SDE中的漂移和扩散率函数,可以将其视为有效的随机分解。损失函数的灵感来自于已建立的随机数值集成剂的结构(在这里,欧拉 - 玛鲁山和米尔斯坦);因此,我们的近似值可以受益于这些基本数值方案的向后误差分析。当近似粗的模型(例如平均场方程)可用时,它们还自然而然地适合“物理信息”的灰色盒识别。 Langevin型方程和随机部分微分方程(SPDE)的现有数值集成方案也可以用于训练;我们在随机强迫振荡器和随机波方程式上证明了这一点。我们的方法不需要长时间的轨迹,可以在散落的快照数据上工作,并且旨在自然处理每个快照的不同时间步骤。我们考虑了预先知道粗糙的集体观察物以及必须以数据驱动方式找到它们的情况。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
在本文中,我们提出了一种深度学习技术,用于数据驱动的流体介质中波传播的预测。该技术依赖于基于注意力的卷积复发自动编码器网络(AB-CRAN)。为了构建波传播数据的低维表示,我们采用了基于转化的卷积自动编码器。具有基于注意力的长期短期记忆细胞的AB-CRAN体系结构构成了我们的深度神经网络模型,用于游行低维特征的时间。我们评估了针对标准复发性神经网络的拟议的AB-Cran框架,用于波传播的低维学习。为了证明AB-Cran模型的有效性,我们考虑了三个基准问题,即一维线性对流,非线性粘性汉堡方程和二维圣人浅水系统。我们的新型AB-CRAN结构使用基准问题的空间 - 时空数据集,可以准确捕获波幅度,并在长期范围内保留溶液的波特性。与具有长期短期记忆细胞的标准复发性神经网络相比,基于注意力的序列到序列网络增加了预测的时间莫。 Denoising自动编码器进一步减少了预测的平方平方误差,并提高了参数空间中的概括能力。
translated by 谷歌翻译
我们提出了一种从数据模拟动态系统的数值方法。我们使用最近引入的方法可扩展的概率近似(SPA)从欧几里德空间到凸多台的项目点,并表示在新的低维坐标中的系统的预计状态,表示其在多晶硅中的位置。然后,我们介绍特定的非线性变换,以构建多特渗透中动力学的模型,并转换回原始状态空间。为了克服投影到低维层的潜在信息损失,我们在局部延迟嵌入定理的意义上使用记忆。通过施工,我们的方法产生稳定的模型。我们说明了在各种示例上具有多个连接组件的甚至复制混沌动力学和吸引子的方法的能力。
translated by 谷歌翻译
Experimental sciences have come to depend heavily on our ability to organize, interpret and analyze high-dimensional datasets produced from observations of a large number of variables governed by natural processes. Natural laws, conservation principles, and dynamical structure introduce intricate inter-dependencies among these observed variables, which in turn yield geometric structure, with fewer degrees of freedom, on the dataset. We show how fine-scale features of this structure in data can be extracted from \emph{discrete} approximations to quantum mechanical processes given by data-driven graph Laplacians and localized wavepackets. This data-driven quantization procedure leads to a novel, yet natural uncertainty principle for data analysis induced by limited data. We illustrate the new approach with algorithms and several applications to real-world data, including the learning of patterns and anomalies in social distancing and mobility behavior during the COVID-19 pandemic.
translated by 谷歌翻译
Identifying coordinate transformations that make strongly nonlinear dynamics approximately linear is a central challenge in modern dynamical systems. These transformations have the potential to enable prediction, estimation, and control of nonlinear systems using standard linear theory. The Koopman operator has emerged as a leading data-driven embedding, as eigenfunctions of this operator provide intrinsic coordinates that globally linearize the dynamics. However, identifying and representing these eigenfunctions has proven to be mathematically and computationally challenging. This work leverages the power of deep learning to discover representations of Koopman eigenfunctions from trajectory data of dynamical systems. Our network is parsimonious and interpretable by construction, embedding the dynamics on a low-dimensional manifold parameterized by these eigenfunctions. In particular, we identify nonlinear coordinates on which the dynamics are globally linear using a modified auto-encoder. We also generalize Koopman representations to include a ubiquitous class of systems that exhibit continuous spectra, ranging from the simple pendulum to nonlinear optics and broadband turbulence. Our framework parametrizes the continuous frequency using an auxiliary network, enabling a compact and efficient embedding, while connecting our models to half a century of asymptotics. In this way, we benefit from the power and generality of deep learning, while retaining the physical interpretability of Koopman embeddings.
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
在本文中,我们考虑了与未知(或部分未知),非平稳性,潜在的嘈杂和混乱的时间演变相关的机器学习(ML)任务,以预测临界点过渡和长期尖端行为动力系统。我们专注于特别具有挑战性的情况,在过去的情况下,过去的动态状态时间序列主要是在状态空间的受限区域中,而要预测的行为会在ML未完全观察到的较大状态空间集中演变出来训练期间的模型。在这种情况下,要求ML预测系统能够推断出在训练过程中观察到的不同动态。我们研究了ML方法在多大程度上能够为此任务完成有用的结果以及它们失败的条件。通常,我们发现即使在极具挑战性的情况下,ML方法也出奇地有效,但是(正如人们所期望的)``需要``太多''的外推。基于科学知识的传统建模的ML方法,因此即使单独采取行动时,我们发现的混合预测系统也可以实现有用的预测。我们还发现,实现有用的结果可能需要使用使用非常仔细选择的ML超参数,我们提出了一个超参数优化策略来解决此问题。本文的主要结论是,基于ML (也许是由于临界点的穿越)包括在训练数据探索的集合中的动态。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
本文介绍了一种新的数据驱动方法,利用由可逆神经网络产生的歧管嵌入,以提高具有有限数据的无组则无法模拟的鲁棒性,效率和准确性。我们通过培训深度神经网络来实现这一点,以将来自本组成歧管的全局映射到下一维欧几里德矢量空间。因此,我们建立了映射欧几里德矢量空间的规范与歧管的度量之间的关系,并导致更具物理上一致的材料数据距离概念。这种处理允许我们绕过昂贵的组合优化,当数据丰富并且高维时,这可能会显着加速无模型模拟。同时,当数据稀疏或在参数空间中不均匀地分布时,嵌入的学习还提高了算法的稳健性。提供了数值实验以证明和测量不同情况下歧管嵌入技术的性能。比较了从所提出的方法获得的结果和通过经典能量规范获得的结果。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
我们介绍了一种算法,用于计算采样歧管的测量测量算法,其依赖于对采样数据的植物嵌入的曲线图的模拟。我们的方法利用经典的结果在半导体分析和量子古典对应中,并形成用于学习数据集的歧管的技术的基础,随后用于高维数据集的非线性维度降低。我们以基于CoVID-19移动数据的聚类演示,从模型歧管中采样数据采样的数据,并通过集群演示来说明新的算法。最后,我们的方法揭示了数据采样和量化提供的离散化之间有趣的连接。
translated by 谷歌翻译