多模式演示为机器人提供了大量信息,以使世界有意义。但是,当从人类示威中学习感觉运动控制政策时,这种丰度可能并不总是会导致良好的表现。无关的数据模式可能导致状态过度规格,在该状态中包含的模式不仅可以在决策中无用,而且可以改变跨环境的数据分布。州过度规格会导致诸如学习的政策之类的问题,而不是在培训数据分布之外推广。在这项工作中,我们提出了掩盖的模仿学习(MIL),以选择性地使用信息方式来解决状态过度指定。具体来说,我们设计了带有二进制掩码的蒙版策略网络,以阻止某些方式。我们开发了一种双层优化算法,该算法可以学习此面具以准确过滤过度指定的模态。我们从经验上证明,使用Robomimic数据集在包括Mujoco和机器人ARM环境在内的模拟域中的基线算法均优于基线算法,并有效地在收集在真实机器人上收集的多模式数据集中有效地恢复了环境不变的模式。我们的项目网站在以下网址介绍了我们的结果的补充详细信息和视频:https://tinyurl.com/masked-il
translated by 谷歌翻译
现有的模仿学习(IL)方法,例如逆增强学习(IRL)通常具有双环培训过程,在学习奖励功能和政策之间交替,并且倾向于遭受较长的训练时间和较高的差异。在这项工作中,我们确定了可区分物理模拟器的好处,并提出了一种新的IL方法,即通过可区分的物理学(ILD)模仿学习,从而摆脱了双环设计,并在最终性能,收敛速度,融合速度,融合速度,融合速度上取得了重大改善和稳定性。提出的ILD将可区分的物理模拟器作为物理学将其纳入其策略学习的计算图中。它通过从参数化策略中采样动作来展开动力学,只需最大程度地减少专家轨迹与代理轨迹之间的距离,并通过时间物理操作员将梯度回到策略中。有了物理学的先验,ILD政策不仅可以转移到看不见的环境规范中,而且可以在各种任务上产生更高的最终表现。此外,ILD自然形成了单环结构,从而显着提高了稳定性和训练速度。为了简化时间物理操作引起的复杂优化景观,ILD在优化过程中动态选择每个状态的学习目标。在我们的实验中,我们表明ILD在各种连续控制任务中都超过了最先进的方法,只需要一个专家演示。此外,ILD可以应用于具有挑战性的可变形对象操纵任务,并可以推广到看不见的配置。
translated by 谷歌翻译
将监督学习的力量(SL)用于更有效的强化学习(RL)方法,这是最近的趋势。我们通过交替在线RL和离线SL来解决稀疏奖励目标条件问题,提出一种新颖的阶段方法。在在线阶段,我们在离线阶段进行RL培训并收集推出数据,我们对数据集的这些成功轨迹执行SL。为了进一步提高样本效率,我们在在线阶段采用其他技术,包括减少任务以产生更可行的轨迹和基于价值的基于价值的内在奖励,以减轻稀疏的回报问题。我们称此总体算法为阶段性的自我模拟还原(Pair)。对稀疏的奖励目标机器人控制问题(包括具有挑战性的堆叠任务),对基本上优于非强调RL和Phasic SL基线。 Pair是第一个学习堆叠6个立方体的RL方法,只有0/1成功从头开始奖励。
translated by 谷歌翻译
Exploration in environments with sparse rewards has been a persistent problem in reinforcement learning (RL). Many tasks are natural to specify with a sparse reward, and manually shaping a reward function can result in suboptimal performance. However, finding a non-zero reward is exponentially more difficult with increasing task horizon or action dimensionality. This puts many real-world tasks out of practical reach of RL methods. In this work, we use demonstrations to overcome the exploration problem and successfully learn to perform long-horizon, multi-step robotics tasks with continuous control such as stacking blocks with a robot arm. Our method, which builds on top of Deep Deterministic Policy Gradients and Hindsight Experience Replay, provides an order of magnitude of speedup over RL on simulated robotics tasks. It is simple to implement and makes only the additional assumption that we can collect a small set of demonstrations. Furthermore, our method is able to solve tasks not solvable by either RL or behavior cloning alone, and often ends up outperforming the demonstrator policy.
translated by 谷歌翻译
长摩根和包括一系列隐性子任务的日常任务仍然在离线机器人控制中构成了重大挑战。尽管许多先前的方法旨在通过模仿和离线增强学习的变体来解决这种设置,但学习的行为通常是狭窄的,并且经常努力实现可配置的长匹配目标。由于这两个范式都具有互补的优势和劣势,因此我们提出了一种新型的层次结构方法,结合了两种方法的优势,以从高维相机观察中学习任务无关的长胜压策略。具体而言,我们结合了一项低级政策,该政策通过模仿学习和从离线强化学习中学到的高级政策学习潜在的技能,以促进潜在的行为先验。各种模拟和真实机器人控制任务的实验表明,我们的配方使以前看不见的技能组合能够通过“缝制”潜在技能通过目标链条,并在绩效上提高绩效的顺序,从而实现潜在的目标。艺术基线。我们甚至还学习了一个多任务视觉运动策略,用于现实世界中25个不同的操纵任务,这既优于模仿学习和离线强化学习技术。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
Transformer, originally devised for natural language processing, has also attested significant success in computer vision. Thanks to its super expressive power, researchers are investigating ways to deploy transformers to reinforcement learning (RL) and the transformer-based models have manifested their potential in representative RL benchmarks. In this paper, we collect and dissect recent advances on transforming RL by transformer (transformer-based RL or TRL), in order to explore its development trajectory and future trend. We group existing developments in two categories: architecture enhancement and trajectory optimization, and examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving. For architecture enhancement, these methods consider how to apply the powerful transformer structure to RL problems under the traditional RL framework, which model agents and environments much more precisely than deep RL methods, but they are still limited by the inherent defects of traditional RL algorithms, such as bootstrapping and "deadly triad". For trajectory optimization, these methods treat RL problems as sequence modeling and train a joint state-action model over entire trajectories under the behavior cloning framework, which are able to extract policies from static datasets and fully use the long-sequence modeling capability of the transformer. Given these advancements, extensions and challenges in TRL are reviewed and proposals about future direction are discussed. We hope that this survey can provide a detailed introduction to TRL and motivate future research in this rapidly developing field.
translated by 谷歌翻译
Humans demonstrate a variety of interesting behavioral characteristics when performing tasks, such as selecting between seemingly equivalent optimal actions, performing recovery actions when deviating from the optimal trajectory, or moderating actions in response to sensed risks. However, imitation learning, which attempts to teach robots to perform these same tasks from observations of human demonstrations, often fails to capture such behavior. Specifically, commonly used learning algorithms embody inherent contradictions between the learning assumptions (e.g., single optimal action) and actual human behavior (e.g., multiple optimal actions), thereby limiting robot generalizability, applicability, and demonstration feasibility. To address this, this paper proposes designing imitation learning algorithms with a focus on utilizing human behavioral characteristics, thereby embodying principles for capturing and exploiting actual demonstrator behavioral characteristics. This paper presents the first imitation learning framework, Bayesian Disturbance Injection (BDI), that typifies human behavioral characteristics by incorporating model flexibility, robustification, and risk sensitivity. Bayesian inference is used to learn flexible non-parametric multi-action policies, while simultaneously robustifying policies by injecting risk-sensitive disturbances to induce human recovery action and ensuring demonstration feasibility. Our method is evaluated through risk-sensitive simulations and real-robot experiments (e.g., table-sweep task, shaft-reach task and shaft-insertion task) using the UR5e 6-DOF robotic arm, to demonstrate the improved characterisation of behavior. Results show significant improvement in task performance, through improved flexibility, robustness as well as demonstration feasibility.
translated by 谷歌翻译
Adversarial imitation learning (AIL) has become a popular alternative to supervised imitation learning that reduces the distribution shift suffered by the latter. However, AIL requires effective exploration during an online reinforcement learning phase. In this work, we show that the standard, naive approach to exploration can manifest as a suboptimal local maximum if a policy learned with AIL sufficiently matches the expert distribution without fully learning the desired task. This can be particularly catastrophic for manipulation tasks, where the difference between an expert and a non-expert state-action pair is often subtle. We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of multiple exploratory, auxiliary tasks in addition to a main task. The addition of these auxiliary tasks forces the agent to explore states and actions that standard AIL may learn to ignore. Additionally, this particular formulation allows for the reusability of expert data between main tasks. Our experimental results in a challenging multitask robotic manipulation domain indicate that LfGP significantly outperforms both AIL and behaviour cloning, while also being more expert sample efficient than these baselines. To explain this performance gap, we provide further analysis of a toy problem that highlights the coupling between a local maximum and poor exploration, and also visualize the differences between the learned models from AIL and LfGP.
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
可推广的对象操纵技能对于智能和多功能机器人在现实世界中的复杂场景中工作至关重要。尽管在强化学习方面取得了最新进展,但学习可以处理一类几何多样的铰接物体的可推广的操纵政策仍然非常具有挑战性。在这项工作中,我们通过以任务不合时宜的方式模仿学习来解决此类别级别的对象操纵政策学习问题,我们假设没有手工制作的密集奖励,而只是最终的奖励。鉴于这个新颖且具有挑战性的概括性政策学习问题,我们确定了几个关键问题,这些问题可能使以前的模仿学习算法失败,并阻碍了概括是看不见的实例。然后,我们提出了几种一般但至关重要的技术,包括从演示中学习的生成性对抗性自我象征学习,歧视者的逐步增长以及对专家缓冲区的实例平衡,可以准确地指出和解决这些问题,并可以受益于类别级别的操纵政策学习,而不管有什么问题任务。我们对Maniskill基准测试的实验表明,所有任务都有显着的改进,而我们的消融研究进一步验证了每种提出的技术的贡献。
translated by 谷歌翻译
通过加强学习(RL)掌握机器人操纵技巧通常需要设计奖励功能。该地区的最新进展表明,使用稀疏奖励,即仅在成功完成任务时奖励代理,可能会导致更好的政策。但是,在这种情况下,国家行动空间探索更困难。最近的RL与稀疏奖励学习的方法已经为任务提供了高质量的人类演示,但这些可能是昂贵的,耗时甚至不可能获得的。在本文中,我们提出了一种不需要人类示范的新颖有效方法。我们观察到,每个机器人操纵任务都可以被视为涉及从被操纵对象的角度来看运动的任务,即,对象可以了解如何自己达到目标状态。为了利用这个想法,我们介绍了一个框架,最初使用现实物理模拟器获得对象运动策略。然后,此策略用于生成辅助奖励,称为模拟的机器人演示奖励(SLDRS),使我们能够学习机器人操纵策略。拟议的方法已在增加复杂性的13个任务中进行了评估,与替代算法相比,可以实现更高的成功率和更快的学习率。 SLDRS对多对象堆叠和非刚性物体操作等任务特别有益。
translated by 谷歌翻译
我们调查视觉跨实施的模仿设置,其中代理商学习来自其他代理的视频(例如人类)的策略,示范相同的任务,但在其实施例中具有缺点差异 - 形状,动作,终效应器动态等。在这项工作中,我们证明可以从对这些差异强大的跨实施例证视频自动发现和学习基于视觉的奖励功能。具体而言,我们介绍了一种用于跨实施的跨实施的自我监督方法(XIRL),它利用时间周期 - 一致性约束来学习深度视觉嵌入,从而从多个专家代理的示范的脱机视频中捕获任务进度,每个都执行相同的任务不同的原因是实施例差异。在我们的工作之前,从自我监督嵌入产生奖励通常需要与参考轨迹对齐,这可能难以根据STARK实施例的差异来获取。我们凭经验显示,如果嵌入式了解任务进度,则只需在学习的嵌入空间中占据当前状态和目标状态之间的负距离是有用的,作为培训与加强学习的培训政策的奖励。我们发现我们的学习奖励功能不仅适用于在训练期间看到的实施例,而且还概括为完全新的实施例。此外,在将现实世界的人类示范转移到模拟机器人时,我们发现XIRL比当前最佳方法更具样本。 https://x-irl.github.io提供定性结果,代码和数据集
translated by 谷歌翻译
生成的对抗性模仿学习(GAIL)可以学习政策,而无需明确定义示威活动的奖励功能。盖尔有可能学习具有高维观测值的政策,例如图像。通过将Gail应用于真正的机器人,也许可以为清洗,折叠衣服,烹饪和清洁等日常活动获得机器人政策。但是,由于错误,人类示范数据通常是不完美的,这会降低由此产生的政策的表现。我们通过关注以下功能来解决此问题:1)许多机器人任务是目标任务,而2)在演示数据中标记此类目标状态相对容易。考虑到这些,本文提出了目标感知的生成对抗性模仿学习(GA-GAIL),该学习通过引入第二个歧视者来训练政策,以与指示演示数据的第一个歧视者并行区分目标状态。这扩展了一个标准的盖尔框架,即使通过促进实现目标状态的目标状态歧视者,甚至可以从不完美的演示中学习理想的政策。此外,GA-GAIL采用熵最大化的深层P-NETWORK(EDPN)作为发电机,该发电机考虑了策略更新中的平滑度和因果熵,以从两个歧视者中获得稳定的政策学习。我们提出的方法成功地应用于两项真正的布料操作任务:将手帕翻过来折叠衣服。我们确认它在没有特定特定任务奖励功能设计的情况下学习了布料操作政策。实际实验的视频可在https://youtu.be/h_nii2ooure上获得。
translated by 谷歌翻译
元加强学习(META-RL)是一种方法,即从解决各种任务中获得的经验被蒸馏成元政策。当仅适应一个小(或仅一个)数量的步骤时,元派利赛能够在新的相关任务上近距离执行。但是,采用这种方法来解决现实世界中的问题的主要挑战是,它们通常与稀疏的奖励功能相关联,这些功能仅表示任务是部分或完全完成的。我们考虑到某些数据可能由亚最佳代理生成的情况,可用于每个任务。然后,我们使用示范(EMRLD)开发了一类名为“增强元RL”的算法,即使在训练过程中获得了次优的指导,也可以利用此信息。我们展示了EMRLD如何共同利用RL和在离线数据上进行监督学习,以生成一个显示单调性能改进的元数据。我们还开发了一个称为EMRLD-WS的温暖开始的变体,该变体对于亚最佳演示数据特别有效。最后,我们表明,在包括移动机器人在内的各种稀疏奖励环境中,我们的EMRLD算法显着优于现有方法。
translated by 谷歌翻译
我们研究了从机器人交互的大型离线数据集学习一系列基于视觉的操纵任务的问题。为了实现这一目标,人类需要简单有效地将任务指定给机器人。目标图像是一种流行的任务规范形式,因为它们已经在机器人的观察空间接地。然而,目标图像也有许多缺点:它们对人类提供的不方便,它们可以通过提供导致稀疏奖励信号的所需行为,或者在非目标达到任务的情况下指定任务信息。自然语言为任务规范提供了一种方便而灵活的替代方案,而是随着机器人观察空间的接地语言挑战。为了可扩展地学习此基础,我们建议利用具有人群源语言标签的离线机器人数据集(包括高度最佳,自主收集的数据)。使用此数据,我们学习一个简单的分类器,该分类器预测状态的更改是否完成了语言指令。这提供了一种语言调节奖励函数,然后可以用于离线多任务RL。在我们的实验中,我们发现,在语言条件的操作任务中,我们的方法优于目标 - 图像规格和语言条件仿制技术超过25%,并且能够从自然语言中执行Visuomotor任务,例如“打开右抽屉“和”移动订书机“,在弗兰卡·埃米卡熊猫机器人上。
translated by 谷歌翻译
Poor sample efficiency continues to be the primary challenge for deployment of deep Reinforcement Learning (RL) algorithms for real-world applications, and in particular for visuo-motor control. Model-based RL has the potential to be highly sample efficient by concurrently learning a world model and using synthetic rollouts for planning and policy improvement. However, in practice, sample-efficient learning with model-based RL is bottlenecked by the exploration challenge. In this work, we find that leveraging just a handful of demonstrations can dramatically improve the sample-efficiency of model-based RL. Simply appending demonstrations to the interaction dataset, however, does not suffice. We identify key ingredients for leveraging demonstrations in model learning -- policy pretraining, targeted exploration, and oversampling of demonstration data -- which forms the three phases of our model-based RL framework. We empirically study three complex visuo-motor control domains and find that our method is 150%-250% more successful in completing sparse reward tasks compared to prior approaches in the low data regime (100K interaction steps, 5 demonstrations). Code and videos are available at: https://nicklashansen.github.io/modemrl
translated by 谷歌翻译
无监督的表示学习的最新进展显着提高了模拟环境中培训强化学习政策的样本效率。但是,尚未看到针对实体强化学习的类似收益。在这项工作中,我们专注于从像素中启用数据有效的实体机器人学习。我们提出了有效的机器人学习(编码器)的对比前训练和数据增强,该方法利用数据增强和无监督的学习来从稀疏奖励中实现对实体ARM策略的样本效率培训。虽然对比预训练,数据增强,演示和强化学习不足以进行有效学习,但我们的主要贡献表明,这些不同技术的组合导致了一种简单而数据效率的方法。我们表明,只有10个示范,一个机器人手臂可以从像素中学习稀疏的奖励操纵策略,例如到达,拾取,移动,拉动大物体,翻转开关并在短短30分钟内打开抽屉现实世界训练时间。我们在项目网站上包括视频和代码:https://sites.google.com/view/felfficited-robotic-manipulation/home
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译