出生的机器是量子启发的生成模型,可利用量子状态的概率性质。在这里,我们提出了一种称为多体局部(MBL)隐藏的机器的新体系结构,该机器同时使用MBL动力学和隐藏单元作为学习资源。从理论上讲,我们证明,MBL出生的机器比古典模型具有更具表现力的能力,而隐藏单元的引入则增强了其学习能力。我们从数值上证明,MBL隐藏的机器能够学习一个玩具数据集,该数据集由MNIST手写数字的模式,从量子多体态获得的量子数据以及非本地奇偶校验数据组成。为了理解学习的机制,我们跟踪了诸如学习过程中冯·诺伊曼纠缠熵和锤击距离之类的物理量,并比较MBL,Thermal和Anderson局部化阶段中的学习成果。我们表明,MBL阶段的优越学习能力重要地依赖于本地化和相互作用。我们的体系结构和算法提供了利用量子多体系统作为学习资源的新颖策略,并在量子系统中揭示了障碍,互动和学习之间的强大联系。
translated by 谷歌翻译
量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,因此可以合理地假设量子生成学习模型(QGLM)可能会超过其经典对应物。因此,QGLM正在从量子物理和计算机科学社区中受到越来越多的关注,在这些QGLM中,可以在近期量子机上有效实施各种QGLM,并提出了潜在的计算优势。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
量子信息技术的快速发展显示了在近期量子设备中模拟量子场理论的有希望的机会。在这项工作中,我们制定了1+1尺寸$ \ lambda \ phi \ phi^4 $量子场理论的(时间依赖性)变异量子模拟理论,包括编码,状态准备和时间演化,并具有多个数值模拟结果。这些算法可以理解为Jordan-Lee-Preskill算法的近期变异类似物,这是使用通用量子设备模拟量子场理论的基本算法。此外,我们强调了基于LSZ降低公式和几种计算效率的谐波振荡器基础编码的优势,例如在实施单一耦合群集ANSATZ的肺泡版本时,以准备初始状态。我们还讨论了如何在量子场理论仿真中规避“光谱拥挤”问题,并根据州和子空间保真度评估我们的算法。
translated by 谷歌翻译
受限的玻尔兹曼机器(RBMS)提供了一种用于无监督的机器学习的多功能体系结构,原则上可以以任意准确性近似任何目标概率分布。但是,RBM模型通常由于其计算复杂性而无法直接访问,并调用了Markov-Chain采样以分析学习概率分布。因此,对于培训和最终应用,希望拥有既准确又有效的采样器。我们强调,这两个目标通常相互竞争,无法同时实现。更具体地说,我们确定并定量地表征了RBM学习的三个制度:独立学习,精度提高而不会失去效率;相关学习,较高的精度需要较低的效率;和退化,精度和效率都不再改善甚至恶化。这些发现基于数值实验和启发式论点。
translated by 谷歌翻译
我们训练神经形态硬件芯片以通过变分能最小化近似Quantum旋转模型的地面状态。与使用马尔可夫链蒙特卡罗进行样品生成的变分人工神经网络相比,这种方法具有优点:神经形态器件以快速和固有的并行方式产生样品。我们开发培训算法,并将其应用于横向场介绍模型,在中等系统尺寸下显示出良好的性能($ n \ LEQ 10 $)。系统的普遍开心研究表明,较大系统尺寸的可扩展性主要取决于样品质量,该样品质量受到模拟神经芯片上的参数漂移的限制。学习性能显示阈值行为作为ansatz的变分参数的数量的函数,大约为50美元的隐藏神经元,足以表示关键地位,最高$ n = 10 $。网络参数的6 + 1位分辨率不会限制当前设置中的可达近似质量。我们的工作为利用神经形态硬件的能力提供了一种重要的一步,以解决量子数量问题中的维数诅咒。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
Machine learning (ML) has recently facilitated many advances in solving problems related to many-body physical systems. Given the intrinsic quantum nature of these problems, it is natural to speculate that quantum-enhanced machine learning will enable us to unveil even greater details than we currently have. With this motivation, this paper examines a quantum machine learning approach based on shallow variational ansatz inspired by tensor networks for supervised learning tasks. In particular, we first look at the standard image classification tasks using the Fashion-MNIST dataset and study the effect of repeating tensor network layers on ansatz's expressibility and performance. Finally, we use this strategy to tackle the problem of quantum phase recognition for the transverse-field Ising and Heisenberg spin models in one and two dimensions, where we were able to reach $\geq 98\%$ test-set accuracies with both multi-scale entanglement renormalization ansatz (MERA) and tree tensor network (TTN) inspired parametrized quantum circuits.
translated by 谷歌翻译
Machine learning has emerged recently as a powerful tool for predicting properties of quantum many-body systems. For many ground states of gapped Hamiltonians, generative models can learn from measurements of a single quantum state to reconstruct the state accurately enough to predict local observables. Alternatively, kernel methods can predict local observables by learning from measurements on different but related states. In this work, we combine the benefits of both approaches and propose the use of conditional generative models to simultaneously represent a family of states, by learning shared structures of different quantum states from measurements. The trained model allows us to predict arbitrary local properties of ground states, even for states not present in the training data, and without necessitating further training for new observables. We numerically validate our approach (with simulations of up to 45 qubits) for two quantum many-body problems, 2D random Heisenberg models and Rydberg atom systems.
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
在过去的十年中,机器学习取得了巨大的成功,其应用程序从面部识别到自然语言处理不等。同时,在量子计算领域已经取得了快速的进步,包括开发强大的量子算法和高级量子设备。机器学习与量子物理学之间的相互作用具有将实际应用带给现代社会的有趣潜力。在这里,我们以参数化量子电路的形式关注量子神经网络。我们将主要讨论各种结构和编码量子神经网络的策略,以进行监督学习任务,并利用Yao.jl进行基准测试,这是用朱莉娅语言编写的量子模拟软件包。这些代码是有效的,旨在为科学工作中的初学者提供便利,例如开发强大的变分量子学习模型并协助相应的实验演示。
translated by 谷歌翻译
The Hamiltonian of an isolated quantum mechanical system determines its dynamics and physical behaviour. This study investigates the possibility of learning and utilising a system's Hamiltonian and its variational thermal state estimation for data analysis techniques. For this purpose, we employ the method of Quantum Hamiltonian-Based Models for the generative modelling of simulated Large Hadron Collider data and demonstrate the representability of such data as a mixed state. In a further step, we use the learned Hamiltonian for anomaly detection, showing that different sample types can form distinct dynamical behaviours once treated as a quantum many-body system. We exploit these characteristics to quantify the difference between sample types. Our findings show that the methodologies designed for field theory computations can be utilised in machine learning applications to employ theoretical approaches in data analysis techniques.
translated by 谷歌翻译
封闭的量子机械系统的物理学受哈密顿量的约束。但是,在大多数实际情况下,这种哈密顿量尚不清楚,最终所有的数据是从系统上的测量中获得的数据。在这项工作中,我们通过将基于机器学习的基于梯度的优化从机器学习中从张量量的网络中从机器学习中从基于梯度的优化中汇总到从基于梯度的优化的技术中汇总到从动力学数据中进行交互的多体汉密尔顿人来学习的家庭。我们的方法非常实用,实验友好且本质上可扩展,以使系统尺寸超过100次旋转。特别是,我们在综合数据上证明了算法的工作原理,即使仅限于一个简单的初始状态,少量的单量观测和时间演变为相对较短的时间。对于一维海森贝格模型的具体示例,我们的算法在系统大小和缩放的误差常数中作为数据集大小的反平方根。
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
量子Gibbs状态的制备是量子计算的重要组成部分,在各种区域具有广泛的应用,包括量子仿真,量子优化和量子机器学习。在本文中,我们提出了用于量子吉布斯状态准备的变分杂化量子典型算法。我们首先利用截短的泰勒系列来评估自由能,并选择截短的自由能量作为损耗功能。然后,我们的协议训练参数化量子电路以学习所需的量子吉布斯状态。值得注意的是,该算法可以在配备有参数化量子电路的近期量子计算机上实现。通过执行数值实验,我们显示浅参数化电路,只有一个额外的量子位训练,以便准备诸如高于95%的保真度的insing链和旋转链Gibbs状态。特别地,对于ising链模型,我们发现,只有一个参数和一个额外的qubit的简化电路ansatz可以训练,以在大于2的逆温度下实现吉布斯状态准备中的99%保真度。
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
由于希尔伯特空间的指数增长,模拟古典计算机上的量子数量是一个具有挑战性的问题。最近被引入了人工神经网络作为近似量子 - 许多身体状态的新工具。我们基准限制Boltzmann机器量子状态和不同浅层神经自动汇流量子状态的变分力,以模拟不可排益量子依赖链的全局淬火动态。我们发现在给定精度以给定精度表示量子状态所需的参数的数量呈指数增长。增长率仅受到广泛不同设计选择的网络架构的略微影响:浅层和深度网络,小型和大型过滤尺寸,扩张和正常卷积,有和没有快捷连接。
translated by 谷歌翻译
作为量子优势的应用,对动态模拟和量子机学习(QML)的关注很大,而使用QML来增强动态模拟的可能性尚未得到彻底研究。在这里,我们开发了一个框架,用于使用QML方法模拟近期量子硬件上的量子动力学。我们使用概括范围,即机器学习模型在看不见的数据上遇到的错误,以严格分析此框架内算法的训练数据要求。这提供了一种保证,就量子和数据要求而言,我们的算法是资源有效的。我们的数字具有问题大小的有效缩放,我们模拟了IBMQ-Bogota上的Trotterization的20倍。
translated by 谷歌翻译
量子机学习(QML)中的内核方法最近引起了人们的重大关注,作为在数据分析中获得量子优势的潜在候选者。在其他有吸引力的属性中,当训练基于内核的模型时,可以保证由于训练格局的凸度而找到最佳模型的参数。但是,这是基于以下假设:量子内核可以从量子硬件有效获得。在这项工作中,我们从准确估计内核值所需的资源的角度研究了量子内核的训练性。我们表明,在某些条件下,可以将量子内核在不同输入数据上的值呈指数浓缩(在量子数中)指向一些固定值,从而导致成功训练所需的测量数量的指数缩放。我们确定了可以导致集中度的四个来源,包括:数据嵌入,全球测量,纠缠和噪声的表达性。对于每个来源,分析得出量子内核的相关浓度结合。最后,我们表明,在处理经典数据时,训练用内核比对方法嵌入的参数化数据也容易受到指数浓度的影响。我们的结果通过数值仿真来验证几个QML任务。总体而言,我们提供指南,表明应避免某些功能,以确保量子内核方法的有效评估和训练性。
translated by 谷歌翻译
状态制备是在量子物理学中的基本重要性,这可以通过将量子电路构造为整体来实现,该单一地将初始状态转换为目标,或者实现量子控制协议以设计的汉密尔顿人发展到目标状态。在这项工作中,我们通过用固定耦合和变分磁场的时间演变来研究后者对量子的数量。具体而言,我们考虑准备汉密尔顿人的地面州,其中包含汉密尔顿人的某些互动的互动,以时间进化。提出了一种优化方法来通过“微粒”的离散化来优化磁场,以获得高精度和稳定性。利用反向传播技术来获得违反对数保真度的字段的梯度。我们的方法在准备Heisenberg链的地面状态与XY和Ising互动的时间演变进行了准备,其性能超过了两种使用本地和全球优化策略的基线方法。我们的工作可以应用和推广到其他量子型号,例如在高维格子上定义的型号。它启示以降低所需交互的复杂性,以通过优化磁场实现量子信息和计算中的量子信息和其他任务。
translated by 谷歌翻译