Machine learning models leak information about the datasets on which they are trained. An adversary can build an algorithm to trace the individual members of a model's training dataset. As a fundamental inference attack, he aims to distinguish between data points that were part of the model's training set and any other data points from the same distribution. This is known as the tracing (and also membership inference) attack. In this paper, we focus on such attacks against black-box models, where the adversary can only observe the output of the model, but not its parameters. This is the current setting of machine learning as a service in the Internet.We introduce a privacy mechanism to train machine learning models that provably achieve membership privacy: the model's predictions on its training data are indistinguishable from its predictions on other data points from the same distribution. We design a strategic mechanism where the privacy mechanism anticipates the membership inference attacks. The objective is to train a model such that not only does it have the minimum prediction error (high utility), but also it is the most robust model against its corresponding strongest inference attack (high privacy). We formalize this as a min-max game optimization problem, and design an adversarial training algorithm that minimizes the classification loss of the model as well as the maximum gain of the membership inference attack against it. This strategy, which guarantees membership privacy (as prediction indistinguishability), acts also as a strong regularizer and significantly generalizes the model.We evaluate our privacy mechanism on deep neural networks using different benchmark datasets. We show that our min-max strategy can mitigate the risk of membership inference attacks (close to the random guess) with a negligible cost in terms of the classification error.
translated by 谷歌翻译
Deep neural networks are susceptible to various inference attacks as they remember information about their training data. We design white-box inference attacks to perform a comprehensive privacy analysis of deep learning models. We measure the privacy leakage through parameters of fully trained models as well as the parameter updates of models during training. We design inference algorithms for both centralized and federated learning, with respect to passive and active inference attackers, and assuming different adversary prior knowledge.We evaluate our novel white-box membership inference attacks against deep learning algorithms to trace their training data records. We show that a straightforward extension of the known black-box attacks to the white-box setting (through analyzing the outputs of activation functions) is ineffective. We therefore design new algorithms tailored to the white-box setting by exploiting the privacy vulnerabilities of the stochastic gradient descent algorithm, which is the algorithm used to train deep neural networks. We investigate the reasons why deep learning models may leak information about their training data. We then show that even well-generalized models are significantly susceptible to white-box membership inference attacks, by analyzing stateof-the-art pre-trained and publicly available models for the CIFAR dataset. We also show how adversarial participants, in the federated learning setting, can successfully run active membership inference attacks against other participants, even when the global model achieves high prediction accuracies.
translated by 谷歌翻译
We quantitatively investigate how machine learning models leak information about the individual data records on which they were trained. We focus on the basic membership inference attack: given a data record and black-box access to a model, determine if the record was in the model's training dataset. To perform membership inference against a target model, we make adversarial use of machine learning and train our own inference model to recognize differences in the target model's predictions on the inputs that it trained on versus the inputs that it did not train on.We empirically evaluate our inference techniques on classification models trained by commercial "machine learning as a service" providers such as Google and Amazon. Using realistic datasets and classification tasks, including a hospital discharge dataset whose membership is sensitive from the privacy perspective, we show that these models can be vulnerable to membership inference attacks. We then investigate the factors that influence this leakage and evaluate mitigation strategies.
translated by 谷歌翻译
对机器学习模型的会员推理攻击(MIA)可能会导致模型培训中使用的培训数据集的严重隐私风险。在本文中,我们提出了一种针对成员推理攻击(MIAS)的新颖有效的神经元引导的防御方法。我们确定了针对MIA的现有防御机制的关键弱点,在该机制中,他们不能同时防御两个常用的基于神经网络的MIA,表明应分别评估这两次攻击以确保防御效果。我们提出了Neuguard,这是一种新的防御方法,可以通过对象共同控制输出和内部神经元的激活,以指导训练集的模型输出和测试集的模型输出以具有近距离分布。 Neuguard由类别的差异最小化靶向限制最终输出神经元和层平衡输出控制的目标,旨在限制每一层中的内部神经元。我们评估Neuguard,并将其与最新的防御能力与两个基于神经网络的MIA,五个最强的基于度量的MIA,包括三个基准数据集中的新提出的仅标签MIA。结果表明,Neuguard通过提供大大改善的公用事业权衡权衡,一般性和间接费用来优于最先进的防御能力。
translated by 谷歌翻译
Neural networks are susceptible to data inference attacks such as the membership inference attack, the adversarial model inversion attack and the attribute inference attack, where the attacker could infer useful information such as the membership, the reconstruction or the sensitive attributes of a data sample from the confidence scores predicted by the target classifier. In this paper, we propose a method, namely PURIFIER, to defend against membership inference attacks. It transforms the confidence score vectors predicted by the target classifier and makes purified confidence scores indistinguishable in individual shape, statistical distribution and prediction label between members and non-members. The experimental results show that PURIFIER helps defend membership inference attacks with high effectiveness and efficiency, outperforming previous defense methods, and also incurs negligible utility loss. Besides, our further experiments show that PURIFIER is also effective in defending adversarial model inversion attacks and attribute inference attacks. For example, the inversion error is raised about 4+ times on the Facescrub530 classifier, and the attribute inference accuracy drops significantly when PURIFIER is deployed in our experiment.
translated by 谷歌翻译
In a membership inference attack, an attacker aims to infer whether a data sample is in a target classifier's training dataset or not. Specifically, given a black-box access to the target classifier, the attacker trains a binary classifier, which takes a data sample's confidence score vector predicted by the target classifier as an input and predicts the data sample to be a member or non-member of the target classifier's training dataset. Membership inference attacks pose severe privacy and security threats to the training dataset. Most existing defenses leverage differential privacy when training the target classifier or regularize the training process of the target classifier. These defenses suffer from two key limitations: 1) they do not have formal utility-loss guarantees of the confidence score vectors, and 2) they achieve suboptimal privacy-utility tradeoffs.In this work, we propose MemGuard, the first defense with formal utility-loss guarantees against black-box membership inference attacks. Instead of tampering the training process of the target classifier, MemGuard adds noise to each confidence score vector predicted by the target classifier. Our key observation is that attacker uses a classifier to predict member or non-member and classifier is vulnerable to adversarial examples. Based on the observation, we propose to add a carefully crafted noise vector to a confidence score vector to turn it into an adversarial example that misleads the attacker's classifier. Specifically, MemGuard works in two phases. In Phase I, MemGuard finds a carefully crafted noise vector that can turn a confidence score vector into an adversarial example, which is likely to mislead the attacker's classifier to make a random guessing at member or non-member. We find such carefully crafted noise vector via a new method that we design to incorporate the unique utility-loss constraints on the noise vector. In Phase II, Mem-Guard adds the noise vector to the confidence score vector with a certain probability, which is selected to satisfy a given utility-loss budget on the confidence score vector. Our experimental results on
translated by 谷歌翻译
Differential privacy is a strong notion for privacy that can be used to prove formal guarantees, in terms of a privacy budget, , about how much information is leaked by a mechanism. However, implementations of privacy-preserving machine learning often select large values of in order to get acceptable utility of the model, with little understanding of the impact of such choices on meaningful privacy. Moreover, in scenarios where iterative learning procedures are used, differential privacy variants that offer tighter analyses are used which appear to reduce the needed privacy budget but present poorly understood trade-offs between privacy and utility. In this paper, we quantify the impact of these choices on privacy in experiments with logistic regression and neural network models. Our main finding is that there is a huge gap between the upper bounds on privacy loss that can be guaranteed, even with advanced mechanisms, and the effective privacy loss that can be measured using current inference attacks. Current mechanisms for differentially private machine learning rarely offer acceptable utility-privacy trade-offs with guarantees for complex learning tasks: settings that provide limited accuracy loss provide meaningless privacy guarantees, and settings that provide strong privacy guarantees result in useless models.
translated by 谷歌翻译
会员推理攻击是机器学习模型中最简单的隐私泄漏形式之一:给定数据点和模型,确定该点是否用于培训模型。当查询其培训数据时,现有会员推理攻击利用模型的异常置信度。如果对手访问模型的预测标签,则不会申请这些攻击,而不会置信度。在本文中,我们介绍了仅限标签的会员资格推理攻击。我们的攻击而不是依赖置信分数,而是评估模型预测标签在扰动下的稳健性,以获得细粒度的隶属信号。这些扰动包括常见的数据增强或对抗例。我们经验表明,我们的标签占会员推理攻击与先前攻击相符,以便需要访问模型信心。我们进一步证明,仅限标签攻击违反了(隐含或明确)依赖于我们呼叫信心屏蔽的现象的员工推论攻击的多种防御。这些防御修改了模型的置信度分数以挫败攻击,但留下模型的预测标签不变。我们的标签攻击展示了置信性掩蔽不是抵御会员推理的可行的防御策略。最后,我们调查唯一的案例标签攻击,该攻击推断为少量异常值数据点。我们显示仅标签攻击也匹配此设置中基于置信的攻击。我们发现具有差异隐私和(强)L2正则化的培训模型是唯一已知的防御策略,成功地防止所有攻击。即使差异隐私预算太高而无法提供有意义的可证明担保,这仍然存在。
translated by 谷歌翻译
机器学习模型容易记住敏感数据,使它们容易受到会员推理攻击的攻击,其中对手的目的是推断是否使用输入样本来训练模型。在过去的几年中,研究人员产生了许多会员推理攻击和防御。但是,这些攻击和防御采用各种策略,并在不同的模型和数据集中进行。但是,缺乏全面的基准意味着我们不了解现有攻击和防御的优势和劣势。我们通过对不同的会员推理攻击和防御措施进行大规模测量来填补这一空白。我们通过研究九项攻击和六项防御措施来系统化成员的推断,并在整体评估中衡量不同攻击和防御的性能。然后,我们量化威胁模型对这些攻击结果的影响。我们发现,威胁模型的某些假设,例如相同架构和阴影和目标模型之间的相同分布是不必要的。我们也是第一个对从Internet收集的现实世界数据而不是实验室数据集进行攻击的人。我们进一步研究是什么决定了会员推理攻击的表现,并揭示了通常认为过度拟合水平不足以成功攻击。取而代之的是,成员和非成员样本之间的熵/横向熵的詹森 - 香农距离与攻击性能的相关性更好。这为我们提供了一种新的方法,可以在不进行攻击的情况下准确预测会员推理风险。最后,我们发现数据增强在更大程度上降低了现有攻击的性能,我们提出了使用增强作用的自适应攻击来训练阴影和攻击模型,以改善攻击性能。
translated by 谷歌翻译
在其培训集中,给定训练有素的模型泄漏了多少培训模型泄露?会员资格推理攻击用作审计工具,以量化模型在其训练集中泄漏的私人信息。会员推理攻击受到不同不确定性的影响,即攻击者必须解决培训数据,培训算法和底层数据分布。因此,攻击成功率,在文献中的许多攻击,不要精确地捕获模型的信息泄漏关于他们的数据,因为它们还反映了攻击算法具有的其他不确定性。在本文中,我们解释了隐含的假设以及使用假设检测框架在现有工作中进行的简化。我们还从框架中获得了新的攻击算法,可以实现高AUC分数,同时还突出显示影响其性能的不同因素。我们的算法捕获模型中隐私损失的非常精确的近似,并且可以用作在机器学习模型中执行准确和了解的隐私风险的工具。我们对各种机器学习任务和基准数据集的攻击策略提供了彻底的实证评估。
translated by 谷歌翻译
机器学习(ML)模型已广泛应用于各种应用,包括图像分类,文本生成,音频识别和图形数据分析。然而,最近的研究表明,ML模型容易受到隶属推导攻击(MIS),其目的是推断数据记录是否用于训练目标模型。 ML模型上的MIA可以直接导致隐私违规行为。例如,通过确定已经用于训练与某种疾病相关的模型的临床记录,攻击者可以推断临床记录的所有者具有很大的机会。近年来,MIS已被证明对各种ML模型有效,例如,分类模型和生成模型。同时,已经提出了许多防御方法来减轻米西亚。虽然ML模型上的MIAS形成了一个新的新兴和快速增长的研究区,但还没有对这一主题进行系统的调查。在本文中,我们对会员推论和防御进行了第一个全面调查。我们根据其特征提供攻击和防御的分类管理,并讨论其优点和缺点。根据本次调查中确定的限制和差距,我们指出了几个未来的未来研究方向,以激发希望遵循该地区的研究人员。这项调查不仅是研究社区的参考,而且还为该研究领域之外的研究人员带来了清晰的照片。为了进一步促进研究人员,我们创建了一个在线资源存储库,并与未来的相关作品继续更新。感兴趣的读者可以在https://github.com/hongshenghu/membership-inference-machine-learning-literature找到存储库。
translated by 谷歌翻译
Machine learning algorithms, when applied to sensitive data, pose a distinct threat to privacy. A growing body of prior work demonstrates that models produced by these algorithms may leak specific private information in the training data to an attacker, either through the models' structure or their observable behavior. However, the underlying cause of this privacy risk is not well understood beyond a handful of anecdotal accounts that suggest overfitting and influence might play a role.This paper examines the effect that overfitting and influence have on the ability of an attacker to learn information about the training data from machine learning models, either through training set membership inference or attribute inference attacks. Using both formal and empirical analyses, we illustrate a clear relationship between these factors and the privacy risk that arises in several popular machine learning algorithms. We find that overfitting is sufficient to allow an attacker to perform membership inference and, when the target attribute meets certain conditions about its influence, attribute inference attacks. Interestingly, our formal analysis also shows that overfitting is not necessary for these attacks and begins to shed light on what other factors may be in play. Finally, we explore the connection between membership inference and attribute inference, showing that there are deep connections between the two that lead to effective new attacks.
translated by 谷歌翻译
作为对培训数据隐私的长期威胁,会员推理攻击(MIA)在机器学习模型中无处不在。现有作品证明了培训的区分性与测试损失分布与模型对MIA的脆弱性之间的密切联系。在现有结果的激励下,我们提出了一个基于轻松损失的新型培训框架,并具有更可实现的学习目标,从而导致概括差距狭窄和隐私泄漏减少。 RelaseLoss适用于任何分类模型,具有易于实施和可忽略不计的开销的额外好处。通过对具有不同方式(图像,医疗数据,交易记录)的五个数据集进行广泛的评估,我们的方法始终优于针对MIA和模型效用的韧性,以最先进的防御机制优于最先进的防御机制。我们的防御是第一个可以承受广泛攻击的同时,同时保存(甚至改善)目标模型的效用。源代码可从https://github.com/dingfanchen/relaxloss获得
translated by 谷歌翻译
如今,深度学习模型的所有者和开发人员必须考虑其培训数据的严格隐私保护规则,通常是人群来源且保留敏感信息。如今,深入学习模型执行隐私保证的最广泛采用的方法依赖于实施差异隐私的优化技术。根据文献,这种方法已被证明是针对多种模型的隐私攻击的成功防御,但其缺点是对模型的性能的实质性降级。在这项工作中,我们比较了差异私有的随机梯度下降(DP-SGD)算法与使用正则化技术的标准优化实践的有效性。我们分析了生成模型的实用程序,培训性能以及成员推理和模型反转攻击对学习模型的有效性。最后,我们讨论了差异隐私的缺陷和限制,并从经验上证明了辍学和L2型规范的卓越保护特性。
translated by 谷歌翻译
隐私敏感数据的培训机器学习模型已成为一种流行的练习,在不断扩大的田野中推动创新。这已经向新攻击打开了门,这可能会产生严重的隐私含义。一个这样的攻击,会员推导攻击(MIA),暴露了特定数据点是否用于训练模型。一种越来越多的文献使用差异的私人(DP)训练算法作为反对这种攻击的辩护。但是,这些作品根据限制假设评估防御,即所有培训集以及非成员的所有成员都是独立的并相同分布的。这种假设没有在文献中的许多真实用例中占据。由此激励,我们评估隶属于样本之间的统计依赖性,并解释为什么DP不提供有意义的保护(在这种更常规的情况下,培训集尺寸$ N $的隐私参数$ \ epsilon $ scales)。我们使用从现实世界数据构建的培训集进行了一系列实证评估,其中包括示出样品之间的不同类型依赖性的培训集。我们的结果表明,培训集依赖关系可能会严重增加MIS的性能,因此假设数据样本在统计上独立,可以显着低估均撒的性能。
translated by 谷歌翻译
鉴于对机器学习模型的访问,可以进行对手重建模型的培训数据?这项工作从一个强大的知情对手的镜头研究了这个问题,他们知道除了一个之外的所有培训数据点。通过实例化混凝土攻击,我们表明重建此严格威胁模型中的剩余数据点是可行的。对于凸模型(例如Logistic回归),重建攻击很简单,可以以封闭形式导出。对于更常规的模型(例如神经网络),我们提出了一种基于训练的攻击策略,该攻击策略接收作为输入攻击的模型的权重,并产生目标数据点。我们展示了我们对MNIST和CIFAR-10训练的图像分类器的攻击的有效性,并系统地研究了标准机器学习管道的哪些因素影响重建成功。最后,我们从理论上调查了有多差异的隐私足以通过知情对手减轻重建攻击。我们的工作提供了有效的重建攻击,模型开发人员可以用于评估超出以前作品中考虑的一般设置中的个别点的记忆(例如,生成语言模型或访问培训梯度);它表明,标准模型具有存储足够信息的能力,以实现培训数据点的高保真重建;它表明,差异隐私可以成功减轻该参数制度中的攻击,其中公用事业劣化最小。
translated by 谷歌翻译
神经网络修剪一直是减少对资源受限设备的深度神经网络的计算和记忆要求的重要技术。大多数现有的研究主要侧重于平衡修剪神经网络的稀疏性和准确性,通过策略性地删除无关紧要的参数并重新修剪修剪模型。由于记忆的增加而造成了严重的隐私风险,因此尚未调查这种训练样品的这种努力。在本文中,我们对神经网络修剪中的隐私风险进行了首次分析。具体而言,我们研究了神经网络修剪对培训数据隐私的影响,即成员推理攻击。我们首先探讨了神经网络修剪对预测差异的影响,在该预测差异中,修剪过程不成比例地影响了修剪的模型对成员和非会员的行为。同时,差异的影响甚至以细粒度的方式在不同类别之间有所不同。通过这种分歧,我们提出了对修剪的神经网络的自我发起会员推断攻击。进行了广泛的实验,以严格评估不同修剪方法,稀疏水平和对手知识的隐私影响。拟议的攻击表明,与现有的八次成员推理攻击相比,对修剪模型的攻击性能更高。此外,我们提出了一种新的防御机制,通过基于KL-Divergence距离来缓解预测差异,以保护修剪过程,该距离的预测差异已通过实验证明,可以有效地降低隐私风险,同时维持较修剪模型的稀疏性和准确性。
translated by 谷歌翻译
Deep ensemble learning has been shown to improve accuracy by training multiple neural networks and averaging their outputs. Ensemble learning has also been suggested to defend against membership inference attacks that undermine privacy. In this paper, we empirically demonstrate a trade-off between these two goals, namely accuracy and privacy (in terms of membership inference attacks), in deep ensembles. Using a wide range of datasets and model architectures, we show that the effectiveness of membership inference attacks increases when ensembling improves accuracy. We analyze the impact of various factors in deep ensembles and demonstrate the root cause of the trade-off. Then, we evaluate common defenses against membership inference attacks based on regularization and differential privacy. We show that while these defenses can mitigate the effectiveness of membership inference attacks, they simultaneously degrade ensemble accuracy. We illustrate similar trade-off in more advanced and state-of-the-art ensembling techniques, such as snapshot ensembles and diversified ensemble networks. Finally, we propose a simple yet effective defense for deep ensembles to break the trade-off and, consequently, improve the accuracy and privacy, simultaneously.
translated by 谷歌翻译
差异隐私(DP)已被出现为严格的形式主义,以推理可量化的隐私泄漏。在机器学习(ML)中,已采用DP限制推理/披露训练示例。在现有的工作中杠杆横跨ML管道,尽管隔离,通常专注于梯度扰动等机制。在本文中,我们展示了DP-util,DP整体实用分析框架,跨越ML管道,重点是输入扰动,客观扰动,梯度扰动,输出扰动和预测扰动。在隐私敏感数据上给出ML任务,DP-Util使ML隐私从业者能够对DP在这五个扰动点中的影响,以模型公用事业丢失,隐私泄漏和真正透露的数量来测量DP的影响。训练样本。我们在视觉,医疗和金融数据集上使用两个代表性学习算法(Logistic回归和深神经网络)来评估DP-Uts,以防止会员资格推论攻击作为案例研究攻击。我们结果的一个亮点是,预测扰动一致地在所有数据集中始终如一地实现所有模型的最低实用损耗。在Logistic回归模型中,与其他扰动技术相比,客观扰动导致最低的隐私泄漏。对于深度神经网络,梯度扰动导致最低的隐私泄漏。此外,我们的结果揭示了记录的结果表明,由于隐私泄漏增加,差异私有模型揭示了更多数量的成员样本。总体而言,我们的研究结果表明,为了使使用的扰动机制有明智的决定,ML隐私从业者需要检查优化技术(凸与非凸),扰动机制,课程数量和隐私预算之间的动态。
translated by 谷歌翻译
属性推理攻击使对手可以从机器学习模型中提取培训数据集的全局属性。此类攻击对共享数据集来培训机器学习模型的数据所有者具有隐私影响。已经提出了几种针对深神经网络的财产推理攻击的现有方法,但它们都依靠攻击者训练大量的影子模型,这会导致大型计算开销。在本文中,我们考虑了攻击者可以毒化训练数据集的子集并查询训练有素的目标模型的属性推理攻击的设置。通过我们对中毒下模型信心的理论分析的激励,我们设计了有效的财产推理攻击,SNAP,该攻击获得了更高的攻击成功,并且需要比Mahloujifar Et的基于最先进的中毒的财产推理攻击更高的中毒量。 al。例如,在人口普查数据集上,SNAP的成功率比Mahloujifar等人高34%。同时更快56.5倍。我们还扩展了攻击,以确定在培训中是否根本存在某个财产,并有效地估算了利息财产的确切比例。我们评估了对四个数据集各种比例的多种属性的攻击,并证明了Snap的一般性和有效性。
translated by 谷歌翻译