作为对培训数据隐私的长期威胁,会员推理攻击(MIA)在机器学习模型中无处不在。现有作品证明了培训的区分性与测试损失分布与模型对MIA的脆弱性之间的密切联系。在现有结果的激励下,我们提出了一个基于轻松损失的新型培训框架,并具有更可实现的学习目标,从而导致概括差距狭窄和隐私泄漏减少。 RelaseLoss适用于任何分类模型,具有易于实施和可忽略不计的开销的额外好处。通过对具有不同方式(图像,医疗数据,交易记录)的五个数据集进行广泛的评估,我们的方法始终优于针对MIA和模型效用的韧性,以最先进的防御机制优于最先进的防御机制。我们的防御是第一个可以承受广泛攻击的同时,同时保存(甚至改善)目标模型的效用。源代码可从https://github.com/dingfanchen/relaxloss获得
translated by 谷歌翻译
对机器学习模型的会员推理攻击(MIA)可能会导致模型培训中使用的培训数据集的严重隐私风险。在本文中,我们提出了一种针对成员推理攻击(MIAS)的新颖有效的神经元引导的防御方法。我们确定了针对MIA的现有防御机制的关键弱点,在该机制中,他们不能同时防御两个常用的基于神经网络的MIA,表明应分别评估这两次攻击以确保防御效果。我们提出了Neuguard,这是一种新的防御方法,可以通过对象共同控制输出和内部神经元的激活,以指导训练集的模型输出和测试集的模型输出以具有近距离分布。 Neuguard由类别的差异最小化靶向限制最终输出神经元和层平衡输出控制的目标,旨在限制每一层中的内部神经元。我们评估Neuguard,并将其与最新的防御能力与两个基于神经网络的MIA,五个最强的基于度量的MIA,包括三个基准数据集中的新提出的仅标签MIA。结果表明,Neuguard通过提供大大改善的公用事业权衡权衡,一般性和间接费用来优于最先进的防御能力。
translated by 谷歌翻译
机器学习模型容易记住敏感数据,使它们容易受到会员推理攻击的攻击,其中对手的目的是推断是否使用输入样本来训练模型。在过去的几年中,研究人员产生了许多会员推理攻击和防御。但是,这些攻击和防御采用各种策略,并在不同的模型和数据集中进行。但是,缺乏全面的基准意味着我们不了解现有攻击和防御的优势和劣势。我们通过对不同的会员推理攻击和防御措施进行大规模测量来填补这一空白。我们通过研究九项攻击和六项防御措施来系统化成员的推断,并在整体评估中衡量不同攻击和防御的性能。然后,我们量化威胁模型对这些攻击结果的影响。我们发现,威胁模型的某些假设,例如相同架构和阴影和目标模型之间的相同分布是不必要的。我们也是第一个对从Internet收集的现实世界数据而不是实验室数据集进行攻击的人。我们进一步研究是什么决定了会员推理攻击的表现,并揭示了通常认为过度拟合水平不足以成功攻击。取而代之的是,成员和非成员样本之间的熵/横向熵的詹森 - 香农距离与攻击性能的相关性更好。这为我们提供了一种新的方法,可以在不进行攻击的情况下准确预测会员推理风险。最后,我们发现数据增强在更大程度上降低了现有攻击的性能,我们提出了使用增强作用的自适应攻击来训练阴影和攻击模型,以改善攻击性能。
translated by 谷歌翻译
会员推理攻击是机器学习模型中最简单的隐私泄漏形式之一:给定数据点和模型,确定该点是否用于培训模型。当查询其培训数据时,现有会员推理攻击利用模型的异常置信度。如果对手访问模型的预测标签,则不会申请这些攻击,而不会置信度。在本文中,我们介绍了仅限标签的会员资格推理攻击。我们的攻击而不是依赖置信分数,而是评估模型预测标签在扰动下的稳健性,以获得细粒度的隶属信号。这些扰动包括常见的数据增强或对抗例。我们经验表明,我们的标签占会员推理攻击与先前攻击相符,以便需要访问模型信心。我们进一步证明,仅限标签攻击违反了(隐含或明确)依赖于我们呼叫信心屏蔽的现象的员工推论攻击的多种防御。这些防御修改了模型的置信度分数以挫败攻击,但留下模型的预测标签不变。我们的标签攻击展示了置信性掩蔽不是抵御会员推理的可行的防御策略。最后,我们调查唯一的案例标签攻击,该攻击推断为少量异常值数据点。我们显示仅标签攻击也匹配此设置中基于置信的攻击。我们发现具有差异隐私和(强)L2正则化的培训模型是唯一已知的防御策略,成功地防止所有攻击。即使差异隐私预算太高而无法提供有意义的可证明担保,这仍然存在。
translated by 谷歌翻译
机器学习(ML)模型已广泛应用于各种应用,包括图像分类,文本生成,音频识别和图形数据分析。然而,最近的研究表明,ML模型容易受到隶属推导攻击(MIS),其目的是推断数据记录是否用于训练目标模型。 ML模型上的MIA可以直接导致隐私违规行为。例如,通过确定已经用于训练与某种疾病相关的模型的临床记录,攻击者可以推断临床记录的所有者具有很大的机会。近年来,MIS已被证明对各种ML模型有效,例如,分类模型和生成模型。同时,已经提出了许多防御方法来减轻米西亚。虽然ML模型上的MIAS形成了一个新的新兴和快速增长的研究区,但还没有对这一主题进行系统的调查。在本文中,我们对会员推论和防御进行了第一个全面调查。我们根据其特征提供攻击和防御的分类管理,并讨论其优点和缺点。根据本次调查中确定的限制和差距,我们指出了几个未来的未来研究方向,以激发希望遵循该地区的研究人员。这项调查不仅是研究社区的参考,而且还为该研究领域之外的研究人员带来了清晰的照片。为了进一步促进研究人员,我们创建了一个在线资源存储库,并与未来的相关作品继续更新。感兴趣的读者可以在https://github.com/hongshenghu/membership-inference-machine-learning-literature找到存储库。
translated by 谷歌翻译
员额推理攻击允许对训练的机器学习模型进行对手以预测模型的训练数据集中包含特定示例。目前使用平均案例的“精度”度量来评估这些攻击,该攻击未能表征攻击是否可以自信地识别培训集的任何成员。我们认为,应该通过计算其低(例如<0.1%)假阳性率来计算攻击来评估攻击,并在以这种方式评估时发现大多数事先攻击差。为了解决这一问题,我们开发了一个仔细结合文献中多种想法的似然比攻击(Lira)。我们的攻击是低于虚假阳性率的10倍,并且在攻击现有度量的情况下也严格占主导地位。
translated by 谷歌翻译
机器学习模型容易受到会员推理攻击的影响,在这种攻击中,对手的目的是预测目标模型培训数据集中是否包含特定样本。现有的攻击方法通常仅从给定的目标模型中利用输出信息(主要是损失)。结果,在成员和非成员样本都产生类似小损失的实际情况下,这些方法自然无法区分它们。为了解决这一限制,在本文中,我们提出了一种称为\系统的新攻击方法,该方法可以利用目标模型的整个培训过程中的成员资格信息来改善攻击性能。要将攻击安装在共同的黑盒环境中,我们利用知识蒸馏,并通过在不同蒸馏时期的中间模型中评估的损失表示成员资格信息,即\ emph {蒸馏损失轨迹},以及损失来自给定的目标模型。对不同数据集和模型体系结构的实验结果证明了我们在不同指标方面的攻击优势。例如,在Cinic-10上,我们的攻击至少达到6 $ \ times $ $阳性的速率,低阳性率为0.1 \%的速率比现有方法高。进一步的分析表明,在更严格的情况下,我们攻击的总体有效性。
translated by 谷歌翻译
神经网络修剪一直是减少对资源受限设备的深度神经网络的计算和记忆要求的重要技术。大多数现有的研究主要侧重于平衡修剪神经网络的稀疏性和准确性,通过策略性地删除无关紧要的参数并重新修剪修剪模型。由于记忆的增加而造成了严重的隐私风险,因此尚未调查这种训练样品的这种努力。在本文中,我们对神经网络修剪中的隐私风险进行了首次分析。具体而言,我们研究了神经网络修剪对培训数据隐私的影响,即成员推理攻击。我们首先探讨了神经网络修剪对预测差异的影响,在该预测差异中,修剪过程不成比例地影响了修剪的模型对成员和非会员的行为。同时,差异的影响甚至以细粒度的方式在不同类别之间有所不同。通过这种分歧,我们提出了对修剪的神经网络的自我发起会员推断攻击。进行了广泛的实验,以严格评估不同修剪方法,稀疏水平和对手知识的隐私影响。拟议的攻击表明,与现有的八次成员推理攻击相比,对修剪模型的攻击性能更高。此外,我们提出了一种新的防御机制,通过基于KL-Divergence距离来缓解预测差异,以保护修剪过程,该距离的预测差异已通过实验证明,可以有效地降低隐私风险,同时维持较修剪模型的稀疏性和准确性。
translated by 谷歌翻译
会员推理攻击(MIA)在机器学习模型的培训数据上提出隐私风险。使用MIA,如果目标数据是训练数据集的成员,则攻击者猜测。对MIAS的最先进的防御,蒸馏为会员隐私(DMP),不仅需要私人数据来保护但是大量未标记的公共数据。但是,在某些隐私敏感域名,如医疗和财务,公共数据的可用性并不明显。此外,通过使用生成的对策网络生成公共数据的琐碎方法显着降低了DMP的作者报道的模型精度。为了克服这个问题,我们在不需要公共数据的情况下,使用知识蒸馏提出对米西亚的小说防御。我们的实验表明,我们防御的隐私保护和准确性与MIA研究中使用的基准表格数据集的DMP相媲美,我们的国防有更好的隐私式权限远非现有防御不使用图像数据集CIFAR10的公共数据。
translated by 谷歌翻译
在其培训集中,给定训练有素的模型泄漏了多少培训模型泄露?会员资格推理攻击用作审计工具,以量化模型在其训练集中泄漏的私人信息。会员推理攻击受到不同不确定性的影响,即攻击者必须解决培训数据,培训算法和底层数据分布。因此,攻击成功率,在文献中的许多攻击,不要精确地捕获模型的信息泄漏关于他们的数据,因为它们还反映了攻击算法具有的其他不确定性。在本文中,我们解释了隐含的假设以及使用假设检测框架在现有工作中进行的简化。我们还从框架中获得了新的攻击算法,可以实现高AUC分数,同时还突出显示影响其性能的不同因素。我们的算法捕获模型中隐私损失的非常精确的近似,并且可以用作在机器学习模型中执行准确和了解的隐私风险的工具。我们对各种机器学习任务和基准数据集的攻击策略提供了彻底的实证评估。
translated by 谷歌翻译
Differential privacy is a strong notion for privacy that can be used to prove formal guarantees, in terms of a privacy budget, , about how much information is leaked by a mechanism. However, implementations of privacy-preserving machine learning often select large values of in order to get acceptable utility of the model, with little understanding of the impact of such choices on meaningful privacy. Moreover, in scenarios where iterative learning procedures are used, differential privacy variants that offer tighter analyses are used which appear to reduce the needed privacy budget but present poorly understood trade-offs between privacy and utility. In this paper, we quantify the impact of these choices on privacy in experiments with logistic regression and neural network models. Our main finding is that there is a huge gap between the upper bounds on privacy loss that can be guaranteed, even with advanced mechanisms, and the effective privacy loss that can be measured using current inference attacks. Current mechanisms for differentially private machine learning rarely offer acceptable utility-privacy trade-offs with guarantees for complex learning tasks: settings that provide limited accuracy loss provide meaningless privacy guarantees, and settings that provide strong privacy guarantees result in useless models.
translated by 谷歌翻译
如今,深度学习模型的所有者和开发人员必须考虑其培训数据的严格隐私保护规则,通常是人群来源且保留敏感信息。如今,深入学习模型执行隐私保证的最广泛采用的方法依赖于实施差异隐私的优化技术。根据文献,这种方法已被证明是针对多种模型的隐私攻击的成功防御,但其缺点是对模型的性能的实质性降级。在这项工作中,我们比较了差异私有的随机梯度下降(DP-SGD)算法与使用正则化技术的标准优化实践的有效性。我们分析了生成模型的实用程序,培训性能以及成员推理和模型反转攻击对学习模型的有效性。最后,我们讨论了差异隐私的缺陷和限制,并从经验上证明了辍学和L2型规范的卓越保护特性。
translated by 谷歌翻译
鉴于对机器学习模型的访问,可以进行对手重建模型的培训数据?这项工作从一个强大的知情对手的镜头研究了这个问题,他们知道除了一个之外的所有培训数据点。通过实例化混凝土攻击,我们表明重建此严格威胁模型中的剩余数据点是可行的。对于凸模型(例如Logistic回归),重建攻击很简单,可以以封闭形式导出。对于更常规的模型(例如神经网络),我们提出了一种基于训练的攻击策略,该攻击策略接收作为输入攻击的模型的权重,并产生目标数据点。我们展示了我们对MNIST和CIFAR-10训练的图像分类器的攻击的有效性,并系统地研究了标准机器学习管道的哪些因素影响重建成功。最后,我们从理论上调查了有多差异的隐私足以通过知情对手减轻重建攻击。我们的工作提供了有效的重建攻击,模型开发人员可以用于评估超出以前作品中考虑的一般设置中的个别点的记忆(例如,生成语言模型或访问培训梯度);它表明,标准模型具有存储足够信息的能力,以实现培训数据点的高保真重建;它表明,差异隐私可以成功减轻该参数制度中的攻击,其中公用事业劣化最小。
translated by 谷歌翻译
In a membership inference attack, an attacker aims to infer whether a data sample is in a target classifier's training dataset or not. Specifically, given a black-box access to the target classifier, the attacker trains a binary classifier, which takes a data sample's confidence score vector predicted by the target classifier as an input and predicts the data sample to be a member or non-member of the target classifier's training dataset. Membership inference attacks pose severe privacy and security threats to the training dataset. Most existing defenses leverage differential privacy when training the target classifier or regularize the training process of the target classifier. These defenses suffer from two key limitations: 1) they do not have formal utility-loss guarantees of the confidence score vectors, and 2) they achieve suboptimal privacy-utility tradeoffs.In this work, we propose MemGuard, the first defense with formal utility-loss guarantees against black-box membership inference attacks. Instead of tampering the training process of the target classifier, MemGuard adds noise to each confidence score vector predicted by the target classifier. Our key observation is that attacker uses a classifier to predict member or non-member and classifier is vulnerable to adversarial examples. Based on the observation, we propose to add a carefully crafted noise vector to a confidence score vector to turn it into an adversarial example that misleads the attacker's classifier. Specifically, MemGuard works in two phases. In Phase I, MemGuard finds a carefully crafted noise vector that can turn a confidence score vector into an adversarial example, which is likely to mislead the attacker's classifier to make a random guessing at member or non-member. We find such carefully crafted noise vector via a new method that we design to incorporate the unique utility-loss constraints on the noise vector. In Phase II, Mem-Guard adds the noise vector to the confidence score vector with a certain probability, which is selected to satisfy a given utility-loss budget on the confidence score vector. Our experimental results on
translated by 谷歌翻译
Deep ensemble learning has been shown to improve accuracy by training multiple neural networks and averaging their outputs. Ensemble learning has also been suggested to defend against membership inference attacks that undermine privacy. In this paper, we empirically demonstrate a trade-off between these two goals, namely accuracy and privacy (in terms of membership inference attacks), in deep ensembles. Using a wide range of datasets and model architectures, we show that the effectiveness of membership inference attacks increases when ensembling improves accuracy. We analyze the impact of various factors in deep ensembles and demonstrate the root cause of the trade-off. Then, we evaluate common defenses against membership inference attacks based on regularization and differential privacy. We show that while these defenses can mitigate the effectiveness of membership inference attacks, they simultaneously degrade ensemble accuracy. We illustrate similar trade-off in more advanced and state-of-the-art ensembling techniques, such as snapshot ensembles and diversified ensemble networks. Finally, we propose a simple yet effective defense for deep ensembles to break the trade-off and, consequently, improve the accuracy and privacy, simultaneously.
translated by 谷歌翻译
半监督学习(SSL)利用标记和未标记的数据来训练机器学习(ML)模型。最先进的SSL方法可以通过利用更少的标记数据来实现与监督学习相当的性能。但是,大多数现有作品都集中在提高SSL的性能。在这项工作中,我们通过研究SSL的培训数据隐私来采取不同的角度。具体而言,我们建议针对由SSL训练的ML模型进行的第一个基于数据增强的成员推理攻击。给定数据样本和黑框访问模型,成员推理攻击的目标是确定数据样本是否属于模型的训练数据集。我们的评估表明,拟议的攻击可以始终超过现有的成员推理攻击,并针对由SSL训练的模型实现最佳性能。此外,我们发现,SSL中会员泄漏的原因与受到监督学习中普遍认为的原因不同,即过度拟合(培训和测试准确性之间的差距)。我们观察到,SSL模型已被概括为测试数据(几乎为0个过度拟合),但“记住”训练数据通过提供更自信的预测,无论其正确性如何。我们还探索了早期停止,作为防止成员推理攻击SSL的对策。结果表明,早期停止可以减轻会员推理攻击,但由于模型的实用性降解成本。
translated by 谷歌翻译
A distribution inference attack aims to infer statistical properties of data used to train machine learning models. These attacks are sometimes surprisingly potent, but the factors that impact distribution inference risk are not well understood and demonstrated attacks often rely on strong and unrealistic assumptions such as full knowledge of training environments even in supposedly black-box threat scenarios. To improve understanding of distribution inference risks, we develop a new black-box attack that even outperforms the best known white-box attack in most settings. Using this new attack, we evaluate distribution inference risk while relaxing a variety of assumptions about the adversary's knowledge under black-box access, like known model architectures and label-only access. Finally, we evaluate the effectiveness of previously proposed defenses and introduce new defenses. We find that although noise-based defenses appear to be ineffective, a simple re-sampling defense can be highly effective. Code is available at https://github.com/iamgroot42/dissecting_distribution_inference
translated by 谷歌翻译
Machine learning models leak information about the datasets on which they are trained. An adversary can build an algorithm to trace the individual members of a model's training dataset. As a fundamental inference attack, he aims to distinguish between data points that were part of the model's training set and any other data points from the same distribution. This is known as the tracing (and also membership inference) attack. In this paper, we focus on such attacks against black-box models, where the adversary can only observe the output of the model, but not its parameters. This is the current setting of machine learning as a service in the Internet.We introduce a privacy mechanism to train machine learning models that provably achieve membership privacy: the model's predictions on its training data are indistinguishable from its predictions on other data points from the same distribution. We design a strategic mechanism where the privacy mechanism anticipates the membership inference attacks. The objective is to train a model such that not only does it have the minimum prediction error (high utility), but also it is the most robust model against its corresponding strongest inference attack (high privacy). We formalize this as a min-max game optimization problem, and design an adversarial training algorithm that minimizes the classification loss of the model as well as the maximum gain of the membership inference attack against it. This strategy, which guarantees membership privacy (as prediction indistinguishability), acts also as a strong regularizer and significantly generalizes the model.We evaluate our privacy mechanism on deep neural networks using different benchmark datasets. We show that our min-max strategy can mitigate the risk of membership inference attacks (close to the random guess) with a negligible cost in terms of the classification error.
translated by 谷歌翻译
分层文本分类包括将文本文档分类为类和子类的层次结构。尽管人造神经网络已经证明有用的是执行这项任务,但遗憾的是,由于培训数据记忆,他们可以将培训数据信息泄漏到对手。在模型培训期间使用差异隐私可以减轻泄漏攻击训练型型号,使模型能够以降低的模型精度安全地共享。这项工作调查了具有差异隐私保证的分层文本分类中的隐私实用权折衷,并识别了提供优越权衡的神经网络架构。为此,我们使用白盒会员推理攻击来凭经验评估三种广泛使用的神经网络架构的信息泄漏。我们表明,大型差异隐私参数已经足以完全减轻隶属度推理攻击,因此仅导致模型实用程序的中等减少。更具体地说,对于具有长文本的大型数据集,我们观察了基于变压器的模型,实现了整体有利的隐私式实用工具权,而对于具有较短文本的较小的数据集是优选的。
translated by 谷歌翻译
依赖于并非所有输入都需要相同数量的计算来产生自信的预测的事实,多EXIT网络正在引起人们的注意,这是推动有效部署限制的重要方法。多EXIT网络赋予了具有早期退出的骨干模型,从而可以在模型的中间层获得预测,从而节省计算时间和/或能量。但是,当前的多种exit网络的各种设计仅被认为是为了实现资源使用效率和预测准确性之间的最佳权衡,从未探索过来自它们的隐私风险。这促使需要全面调查多EXIT网络中的隐私风险。在本文中,我们通过会员泄漏的镜头对多EXIT网络进行了首次隐私分析。特别是,我们首先利用现有的攻击方法来量化多exit网络对成员泄漏的脆弱性。我们的实验结果表明,多EXIT网络不太容易受到会员泄漏的影响,而在骨干模型上附加的退出(数字和深度)与攻击性能高度相关。此外,我们提出了一种混合攻击,该攻击利用退出信息以提高现有攻击的性能。我们评估了由三种不同的对手设置下的混合攻击造成的成员泄漏威胁,最终到达了无模型和无数据的对手。这些结果清楚地表明,我们的混合攻击非常广泛地适用,因此,相应的风险比现有的会员推理攻击所显示的要严重得多。我们进一步提出了一种专门针对多EXIT网络的TimeGuard的防御机制,并表明TimeGuard完美地减轻了新提出的攻击。
translated by 谷歌翻译