机器学习(ML)模型已广泛应用于各种应用,包括图像分类,文本生成,音频识别和图形数据分析。然而,最近的研究表明,ML模型容易受到隶属推导攻击(MIS),其目的是推断数据记录是否用于训练目标模型。 ML模型上的MIA可以直接导致隐私违规行为。例如,通过确定已经用于训练与某种疾病相关的模型的临床记录,攻击者可以推断临床记录的所有者具有很大的机会。近年来,MIS已被证明对各种ML模型有效,例如,分类模型和生成模型。同时,已经提出了许多防御方法来减轻米西亚。虽然ML模型上的MIAS形成了一个新的新兴和快速增长的研究区,但还没有对这一主题进行系统的调查。在本文中,我们对会员推论和防御进行了第一个全面调查。我们根据其特征提供攻击和防御的分类管理,并讨论其优点和缺点。根据本次调查中确定的限制和差距,我们指出了几个未来的未来研究方向,以激发希望遵循该地区的研究人员。这项调查不仅是研究社区的参考,而且还为该研究领域之外的研究人员带来了清晰的照片。为了进一步促进研究人员,我们创建了一个在线资源存储库,并与未来的相关作品继续更新。感兴趣的读者可以在https://github.com/hongshenghu/membership-inference-machine-learning-literature找到存储库。
translated by 谷歌翻译
从公共机器学习(ML)模型中泄漏数据是一个越来越重要的领域,因为ML的商业和政府应用可以利用多个数据源,可能包括用户和客户的敏感数据。我们对几个方面的当代进步进行了全面的调查,涵盖了非自愿数据泄漏,这对ML模型很自然,潜在的恶毒泄漏是由隐私攻击引起的,以及目前可用的防御机制。我们专注于推理时间泄漏,这是公开可用模型的最可能场景。我们首先在不同的数据,任务和模型体系结构的背景下讨论什么是泄漏。然后,我们提出了跨非自愿和恶意泄漏的分类法,可用的防御措施,然后进行当前可用的评估指标和应用。我们以杰出的挑战和开放性的问题结束,概述了一些有希望的未来研究方向。
translated by 谷歌翻译
Speech-centric machine learning systems have revolutionized many leading domains ranging from transportation and healthcare to education and defense, profoundly changing how people live, work, and interact with each other. However, recent studies have demonstrated that many speech-centric ML systems may need to be considered more trustworthy for broader deployment. Specifically, concerns over privacy breaches, discriminating performance, and vulnerability to adversarial attacks have all been discovered in ML research fields. In order to address the above challenges and risks, a significant number of efforts have been made to ensure these ML systems are trustworthy, especially private, safe, and fair. In this paper, we conduct the first comprehensive survey on speech-centric trustworthy ML topics related to privacy, safety, and fairness. In addition to serving as a summary report for the research community, we point out several promising future research directions to inspire the researchers who wish to explore further in this area.
translated by 谷歌翻译
机器学习模型容易记住敏感数据,使它们容易受到会员推理攻击的攻击,其中对手的目的是推断是否使用输入样本来训练模型。在过去的几年中,研究人员产生了许多会员推理攻击和防御。但是,这些攻击和防御采用各种策略,并在不同的模型和数据集中进行。但是,缺乏全面的基准意味着我们不了解现有攻击和防御的优势和劣势。我们通过对不同的会员推理攻击和防御措施进行大规模测量来填补这一空白。我们通过研究九项攻击和六项防御措施来系统化成员的推断,并在整体评估中衡量不同攻击和防御的性能。然后,我们量化威胁模型对这些攻击结果的影响。我们发现,威胁模型的某些假设,例如相同架构和阴影和目标模型之间的相同分布是不必要的。我们也是第一个对从Internet收集的现实世界数据而不是实验室数据集进行攻击的人。我们进一步研究是什么决定了会员推理攻击的表现,并揭示了通常认为过度拟合水平不足以成功攻击。取而代之的是,成员和非成员样本之间的熵/横向熵的詹森 - 香农距离与攻击性能的相关性更好。这为我们提供了一种新的方法,可以在不进行攻击的情况下准确预测会员推理风险。最后,我们发现数据增强在更大程度上降低了现有攻击的性能,我们提出了使用增强作用的自适应攻击来训练阴影和攻击模型,以改善攻击性能。
translated by 谷歌翻译
窃取对受控信息的攻击,以及越来越多的信息泄漏事件,已成为近年来新兴网络安全威胁。由于蓬勃发展和部署先进的分析解决方案,新颖的窃取攻击利用机器学习(ML)算法来实现高成功率并导致大量损坏。检测和捍卫这种攻击是挑战性和紧迫的,因此政府,组织和个人应该非常重视基于ML的窃取攻击。本调查显示了这种新型攻击和相应对策的最新进展。以三类目标受控信息的视角审查了基于ML的窃取攻击,包括受控用户活动,受控ML模型相关信息和受控认证信息。最近的出版物总结了概括了总体攻击方法,并导出了基于ML的窃取攻击的限制和未来方向。此外,提出了从三个方面制定有效保护的对策 - 检测,破坏和隔离。
translated by 谷歌翻译
会员推理攻击是机器学习模型中最简单的隐私泄漏形式之一:给定数据点和模型,确定该点是否用于培训模型。当查询其培训数据时,现有会员推理攻击利用模型的异常置信度。如果对手访问模型的预测标签,则不会申请这些攻击,而不会置信度。在本文中,我们介绍了仅限标签的会员资格推理攻击。我们的攻击而不是依赖置信分数,而是评估模型预测标签在扰动下的稳健性,以获得细粒度的隶属信号。这些扰动包括常见的数据增强或对抗例。我们经验表明,我们的标签占会员推理攻击与先前攻击相符,以便需要访问模型信心。我们进一步证明,仅限标签攻击违反了(隐含或明确)依赖于我们呼叫信心屏蔽的现象的员工推论攻击的多种防御。这些防御修改了模型的置信度分数以挫败攻击,但留下模型的预测标签不变。我们的标签攻击展示了置信性掩蔽不是抵御会员推理的可行的防御策略。最后,我们调查唯一的案例标签攻击,该攻击推断为少量异常值数据点。我们显示仅标签攻击也匹配此设置中基于置信的攻击。我们发现具有差异隐私和(强)L2正则化的培训模型是唯一已知的防御策略,成功地防止所有攻击。即使差异隐私预算太高而无法提供有意义的可证明担保,这仍然存在。
translated by 谷歌翻译
会员推理攻击(MIA)在机器学习模型的培训数据上提出隐私风险。使用MIA,如果目标数据是训练数据集的成员,则攻击者猜测。对MIAS的最先进的防御,蒸馏为会员隐私(DMP),不仅需要私人数据来保护但是大量未标记的公共数据。但是,在某些隐私敏感域名,如医疗和财务,公共数据的可用性并不明显。此外,通过使用生成的对策网络生成公共数据的琐碎方法显着降低了DMP的作者报道的模型精度。为了克服这个问题,我们在不需要公共数据的情况下,使用知识蒸馏提出对米西亚的小说防御。我们的实验表明,我们防御的隐私保护和准确性与MIA研究中使用的基准表格数据集的DMP相媲美,我们的国防有更好的隐私式权限远非现有防御不使用图像数据集CIFAR10的公共数据。
translated by 谷歌翻译
Deep neural networks are susceptible to various inference attacks as they remember information about their training data. We design white-box inference attacks to perform a comprehensive privacy analysis of deep learning models. We measure the privacy leakage through parameters of fully trained models as well as the parameter updates of models during training. We design inference algorithms for both centralized and federated learning, with respect to passive and active inference attackers, and assuming different adversary prior knowledge.We evaluate our novel white-box membership inference attacks against deep learning algorithms to trace their training data records. We show that a straightforward extension of the known black-box attacks to the white-box setting (through analyzing the outputs of activation functions) is ineffective. We therefore design new algorithms tailored to the white-box setting by exploiting the privacy vulnerabilities of the stochastic gradient descent algorithm, which is the algorithm used to train deep neural networks. We investigate the reasons why deep learning models may leak information about their training data. We then show that even well-generalized models are significantly susceptible to white-box membership inference attacks, by analyzing stateof-the-art pre-trained and publicly available models for the CIFAR dataset. We also show how adversarial participants, in the federated learning setting, can successfully run active membership inference attacks against other participants, even when the global model achieves high prediction accuracies.
translated by 谷歌翻译
We quantitatively investigate how machine learning models leak information about the individual data records on which they were trained. We focus on the basic membership inference attack: given a data record and black-box access to a model, determine if the record was in the model's training dataset. To perform membership inference against a target model, we make adversarial use of machine learning and train our own inference model to recognize differences in the target model's predictions on the inputs that it trained on versus the inputs that it did not train on.We empirically evaluate our inference techniques on classification models trained by commercial "machine learning as a service" providers such as Google and Amazon. Using realistic datasets and classification tasks, including a hospital discharge dataset whose membership is sensitive from the privacy perspective, we show that these models can be vulnerable to membership inference attacks. We then investigate the factors that influence this leakage and evaluate mitigation strategies.
translated by 谷歌翻译
Differential privacy is a strong notion for privacy that can be used to prove formal guarantees, in terms of a privacy budget, , about how much information is leaked by a mechanism. However, implementations of privacy-preserving machine learning often select large values of in order to get acceptable utility of the model, with little understanding of the impact of such choices on meaningful privacy. Moreover, in scenarios where iterative learning procedures are used, differential privacy variants that offer tighter analyses are used which appear to reduce the needed privacy budget but present poorly understood trade-offs between privacy and utility. In this paper, we quantify the impact of these choices on privacy in experiments with logistic regression and neural network models. Our main finding is that there is a huge gap between the upper bounds on privacy loss that can be guaranteed, even with advanced mechanisms, and the effective privacy loss that can be measured using current inference attacks. Current mechanisms for differentially private machine learning rarely offer acceptable utility-privacy trade-offs with guarantees for complex learning tasks: settings that provide limited accuracy loss provide meaningless privacy guarantees, and settings that provide strong privacy guarantees result in useless models.
translated by 谷歌翻译
机器学习的最新进展使其在不同领域的广泛应用程序,最令人兴奋的应用程序之一是自动驾驶汽车(AV),这鼓励了从感知到预测到计划的许多ML算法的开发。但是,培训AV通常需要从不同驾驶环境(例如城市)以及不同类型的个人信息(例如工作时间和路线)收集的大量培训数据。这种收集的大数据被视为以数据为中心的AI时代的ML新油,通常包含大量对隐私敏感的信息,这些信息很难删除甚至审核。尽管现有的隐私保护方法已经取得了某些理论和经验成功,但将它们应用于自动驾驶汽车等现实世界应用时仍存在差距。例如,当培训AVS时,不仅可以单独识别的信息揭示对隐私敏感的信息,还可以揭示人口级别的信息,例如城市内的道路建设以及AVS的专有商业秘密。因此,重新审视AV中隐私风险和相应保护方法的前沿以弥合这一差距至关重要。遵循这一目标,在这项工作中,我们为AVS中的隐私风险和保护方法提供了新的分类法,并将AV中的隐私分为三个层面:个人,人口和专有。我们明确列出了保护每个级别的隐私级别,总结这些挑战的现有解决方案,讨论课程和结论,并为研究人员和从业者提供潜在的未来方向和机会。我们认为,这项工作将有助于塑造AV中的隐私研究,并指导隐私保护技术设计。
translated by 谷歌翻译
机器学习模型容易受到会员推理攻击的影响,在这种攻击中,对手的目的是预测目标模型培训数据集中是否包含特定样本。现有的攻击方法通常仅从给定的目标模型中利用输出信息(主要是损失)。结果,在成员和非成员样本都产生类似小损失的实际情况下,这些方法自然无法区分它们。为了解决这一限制,在本文中,我们提出了一种称为\系统的新攻击方法,该方法可以利用目标模型的整个培训过程中的成员资格信息来改善攻击性能。要将攻击安装在共同的黑盒环境中,我们利用知识蒸馏,并通过在不同蒸馏时期的中间模型中评估的损失表示成员资格信息,即\ emph {蒸馏损失轨迹},以及损失来自给定的目标模型。对不同数据集和模型体系结构的实验结果证明了我们在不同指标方面的攻击优势。例如,在Cinic-10上,我们的攻击至少达到6 $ \ times $ $阳性的速率,低阳性率为0.1 \%的速率比现有方法高。进一步的分析表明,在更严格的情况下,我们攻击的总体有效性。
translated by 谷歌翻译
大量工作表明,机器学习(ML)模型可以泄漏有关其培训数据的敏感或机密信息。最近,由于分布推断(或属性推断)攻击引起的泄漏正在引起人们的注意。在此攻击中,对手的目标是推断有关培训数据的分配信息。到目前为止,对分布推理的研究集中在证明成功的攻击上,而很少注意确定泄漏的潜在原因和提出缓解。为了弥合这一差距,作为我们的主要贡献,我们从理论和经验上分析了信息泄漏的来源,这使对手能够进行分布推理攻击。我们确定泄漏的三个来源:(1)记住有关$ \ mathbb {e} [y | x] $(给定特征值的预期标签)的特定信息,((2)模型的错误归纳偏置,以及(3)培训数据的有限性。接下来,根据我们的分析,我们提出了针对分配推理攻击的原则缓解技术。具体而言,我们证明了因果学习技术比相关学习方法更适合特定类型的分布推理所谓的分配构件推理。最后,我们提出了分布推断的形式化,该推论允许对比以前更多的一般对手进行推理。
translated by 谷歌翻译
In a membership inference attack, an attacker aims to infer whether a data sample is in a target classifier's training dataset or not. Specifically, given a black-box access to the target classifier, the attacker trains a binary classifier, which takes a data sample's confidence score vector predicted by the target classifier as an input and predicts the data sample to be a member or non-member of the target classifier's training dataset. Membership inference attacks pose severe privacy and security threats to the training dataset. Most existing defenses leverage differential privacy when training the target classifier or regularize the training process of the target classifier. These defenses suffer from two key limitations: 1) they do not have formal utility-loss guarantees of the confidence score vectors, and 2) they achieve suboptimal privacy-utility tradeoffs.In this work, we propose MemGuard, the first defense with formal utility-loss guarantees against black-box membership inference attacks. Instead of tampering the training process of the target classifier, MemGuard adds noise to each confidence score vector predicted by the target classifier. Our key observation is that attacker uses a classifier to predict member or non-member and classifier is vulnerable to adversarial examples. Based on the observation, we propose to add a carefully crafted noise vector to a confidence score vector to turn it into an adversarial example that misleads the attacker's classifier. Specifically, MemGuard works in two phases. In Phase I, MemGuard finds a carefully crafted noise vector that can turn a confidence score vector into an adversarial example, which is likely to mislead the attacker's classifier to make a random guessing at member or non-member. We find such carefully crafted noise vector via a new method that we design to incorporate the unique utility-loss constraints on the noise vector. In Phase II, Mem-Guard adds the noise vector to the confidence score vector with a certain probability, which is selected to satisfy a given utility-loss budget on the confidence score vector. Our experimental results on
translated by 谷歌翻译
Machine learning (ML) has become a core component of many real-world applications and training data is a key factor that drives current progress. This huge success has led Internet companies to deploy machine learning as a service (MLaaS). Recently, the first membership inference attack has shown that extraction of information on the training set is possible in such MLaaS settings, which has severe security and privacy implications.However, the early demonstrations of the feasibility of such attacks have many assumptions on the adversary, such as using multiple so-called shadow models, knowledge of the target model structure, and having a dataset from the same distribution as the target model's training data. We relax all these key assumptions, thereby showing that such attacks are very broadly applicable at low cost and thereby pose a more severe risk than previously thought. We present the most comprehensive study so far on this emerging and developing threat using eight diverse datasets which show the viability of the proposed attacks across domains.In addition, we propose the first effective defense mechanisms against such broader class of membership inference attacks that maintain a high level of utility of the ML model.
translated by 谷歌翻译
依赖于并非所有输入都需要相同数量的计算来产生自信的预测的事实,多EXIT网络正在引起人们的注意,这是推动有效部署限制的重要方法。多EXIT网络赋予了具有早期退出的骨干模型,从而可以在模型的中间层获得预测,从而节省计算时间和/或能量。但是,当前的多种exit网络的各种设计仅被认为是为了实现资源使用效率和预测准确性之间的最佳权衡,从未探索过来自它们的隐私风险。这促使需要全面调查多EXIT网络中的隐私风险。在本文中,我们通过会员泄漏的镜头对多EXIT网络进行了首次隐私分析。特别是,我们首先利用现有的攻击方法来量化多exit网络对成员泄漏的脆弱性。我们的实验结果表明,多EXIT网络不太容易受到会员泄漏的影响,而在骨干模型上附加的退出(数字和深度)与攻击性能高度相关。此外,我们提出了一种混合攻击,该攻击利用退出信息以提高现有攻击的性能。我们评估了由三种不同的对手设置下的混合攻击造成的成员泄漏威胁,最终到达了无模型和无数据的对手。这些结果清楚地表明,我们的混合攻击非常广泛地适用,因此,相应的风险比现有的会员推理攻击所显示的要严重得多。我们进一步提出了一种专门针对多EXIT网络的TimeGuard的防御机制,并表明TimeGuard完美地减轻了新提出的攻击。
translated by 谷歌翻译
作为对培训数据隐私的长期威胁,会员推理攻击(MIA)在机器学习模型中无处不在。现有作品证明了培训的区分性与测试损失分布与模型对MIA的脆弱性之间的密切联系。在现有结果的激励下,我们提出了一个基于轻松损失的新型培训框架,并具有更可实现的学习目标,从而导致概括差距狭窄和隐私泄漏减少。 RelaseLoss适用于任何分类模型,具有易于实施和可忽略不计的开销的额外好处。通过对具有不同方式(图像,医疗数据,交易记录)的五个数据集进行广泛的评估,我们的方法始终优于针对MIA和模型效用的韧性,以最先进的防御机制优于最先进的防御机制。我们的防御是第一个可以承受广泛攻击的同时,同时保存(甚至改善)目标模型的效用。源代码可从https://github.com/dingfanchen/relaxloss获得
translated by 谷歌翻译
对机器学习模型的会员推理攻击(MIA)可能会导致模型培训中使用的培训数据集的严重隐私风险。在本文中,我们提出了一种针对成员推理攻击(MIAS)的新颖有效的神经元引导的防御方法。我们确定了针对MIA的现有防御机制的关键弱点,在该机制中,他们不能同时防御两个常用的基于神经网络的MIA,表明应分别评估这两次攻击以确保防御效果。我们提出了Neuguard,这是一种新的防御方法,可以通过对象共同控制输出和内部神经元的激活,以指导训练集的模型输出和测试集的模型输出以具有近距离分布。 Neuguard由类别的差异最小化靶向限制最终输出神经元和层平衡输出控制的目标,旨在限制每一层中的内部神经元。我们评估Neuguard,并将其与最新的防御能力与两个基于神经网络的MIA,五个最强的基于度量的MIA,包括三个基准数据集中的新提出的仅标签MIA。结果表明,Neuguard通过提供大大改善的公用事业权衡权衡,一般性和间接费用来优于最先进的防御能力。
translated by 谷歌翻译
联邦学习的出现在维持隐私的同时,促进了机器学习模型之间的大规模数据交换。尽管历史悠久,但联邦学习正在迅速发展,以使更广泛的使用更加实用。该领域中最重要的进步之一是将转移学习纳入联邦学习,这克服了主要联合学习的基本限制,尤其是在安全方面。本章从安全的角度进行了有关联合和转移学习的交集的全面调查。这项研究的主要目标是发现可能损害使用联合和转移学习的系统的隐私和性能的潜在脆弱性和防御机制。
translated by 谷歌翻译
机器学习与服务(MLAAS)已成为广泛的范式,即使是通过例如,也是客户可用的最复杂的机器学习模型。一个按要求的原则。这使用户避免了数据收集,超参数调整和模型培训的耗时过程。但是,通过让客户访问(预测)模型,MLAAS提供商危害其知识产权,例如敏感培训数据,优化的超参数或学到的模型参数。对手可以仅使用预测标签创建模型的副本,并以(几乎)相同的行为。尽管已经描述了这种攻击的许多变体,但仅提出了零星的防御策略,以解决孤立的威胁。这增加了对模型窃取领域进行彻底系统化的必要性,以全面了解这些攻击是成功的原因,以及如何全面地捍卫它们。我们通过对模型窃取攻击,评估其性能以及探索不同设置中相应的防御技术来解决这一问题。我们为攻击和防御方法提出了分类法,并提供有关如何根据目标和可用资源选择正确的攻击或防御策略的准则。最后,我们分析了当前攻击策略使哪些防御能力降低。
translated by 谷歌翻译