This study focuses on embodied agents that can follow natural language instructions to complete complex tasks in a visually-perceived environment. Existing methods rely on a large amount of (instruction, gold trajectory) pairs to learn a good policy. The high data cost and poor sample efficiency prevents the development of versatile agents that are capable of many tasks and can learn new tasks quickly. In this work, we propose a novel method, LLM-Planner, that harnesses the power of large language models (LLMs) such as GPT-3 to do few-shot planning for embodied agents. We further propose a simple but effective way to enhance LLMs with physical grounding to generate plans that are grounded in the current environment. Experiments on the ALFRED dataset show that our method can achieve very competitive few-shot performance, even outperforming several recent baselines that are trained using the full training data despite using less than 0.5% of paired training data. Existing methods can barely complete any task successfully under the same few-shot setting. Our work opens the door for developing versatile and sample-efficient embodied agents that can quickly learn many tasks.
translated by 谷歌翻译
最近的作品表明,如何将大语言模型(LLM)的推理能力应用于自然语言处理以外的领域,例如机器人的计划和互动。这些具体的问题要求代理商了解世界上许多语义方面:可用技能的曲目,这些技能如何影响世界以及对世界的变化如何映射回该语言。在体现环境中规划的LLMS不仅需要考虑要做什么技能,还需要考虑如何以及何时进行操作 - 答案随着时间的推移而变化,以响应代理商自己的选择。在这项工作中,我们调查了在这种体现的环境中使用的LLM在多大程度上可以推论通过自然语言提供的反馈来源,而无需任何其他培训。我们建议,通过利用环境反馈,LLM能够形成内部独白,使他们能够在机器人控制方案中进行更丰富的处理和计划。我们研究了各种反馈来源,例如成功检测,场景描述和人类互动。我们发现,闭环语言反馈显着改善了三个领域的高级指导完成,包括模拟和真实的桌面顶部重新排列任务以及现实世界中厨房环境中的长途移动操作任务。
translated by 谷歌翻译
我们研究了开发自主代理的问题,这些自主代理可以遵循人类的指示来推断和执行一系列行动以完成基础任务。近年来取得了重大进展,尤其是对于短范围的任务。但是,当涉及具有扩展动作序列的长匹马任务时,代理可以轻松忽略某些指令或陷入长长指令中间,并最终使任务失败。为了应对这一挑战,我们提出了一个基于模型的里程碑的任务跟踪器(M-Track),以指导代理商并监视其进度。具体而言,我们提出了一个里程碑构建器,该建筑商通过导航和交互里程碑标记指令,代理商需要逐步完成,以及一个系统地检查代理商当前里程碑的进度并确定何时继续进行下一个的里程碑检查器。在具有挑战性的Alfred数据集上,我们的M轨道在两个竞争基本模型中,未见成功率的相对成功率显着提高了33%和52%。
translated by 谷歌翻译
Embodied Instruction Following (EIF) studies how mobile manipulator robots should be controlled to accomplish long-horizon tasks specified by natural language instructions. While most research on EIF are conducted in simulators, the ultimate goal of the field is to deploy the agents in real life. As such, it is important to minimize the data cost required for training an agent, to help the transition from sim to real. However, many studies only focus on the performance and overlook the data cost -- modules that require separate training on extra data are often introduced without a consideration on deployability. In this work, we propose FILM++ which extends the existing work FILM with modifications that do not require extra data. While all data-driven modules are kept constant, FILM++ more than doubles FILM's performance. Furthermore, we propose Prompter, which replaces FILM++'s semantic search module with language model prompting. Unlike FILM++'s implementation that requires training on extra sets of data, no training is needed for our prompting based implementation while achieving better or at least comparable performance. Prompter achieves 42.64% and 45.72% on the ALFRED benchmark with high-level instructions only and with step-by-step instructions, respectively, outperforming the previous state of the art by 6.57% and 10.31%.
translated by 谷歌翻译
建立一个对话体现的代理执行现实生活任务一直是一个长期而又具有挑战性的研究目标,因为它需要有效的人类代理沟通,多模式理解,远程顺序决策等。传统的符号方法具有扩展和概括问题,而端到端的深度学习模型则遭受数据稀缺和高任务复杂性的影响,并且通常很难解释。为了从两全其美的世界中受益,我们提出了一个神经符号常识性推理(JARVIS)框架,用于模块化,可推广和可解释的对话体现的药物。首先,它通过提示大型语言模型(LLM)来获得符号表示,以了解语言理解和次目标计划,并通过从视觉观察中构建语义图。然后,基于任务和动作级别的常识,次目标计划和行动生成的符号模块。在Teach数据集上进行的大量实验验证了我们的JARVIS框架的功效和效率,该框架在所有三个基于对话框的具体任务上实现了最新的(SOTA)结果,包括对话记录(EDH)的执行,对话框的轨迹, (TFD)和两个代理任务完成(TATC)(例如,我们的方法将EDH看不见的成功率从6.1 \%\%提高到15.8 \%)。此外,我们系统地分析了影响任务绩效的基本因素,并在几个射击设置中证明了我们方法的优越性。我们的Jarvis模型在Alexa奖Simbot公共基准挑战赛中排名第一。
translated by 谷歌翻译
We present ALFRED (Action Learning From Realistic Environments and Directives), a benchmark for learning a mapping from natural language instructions and egocentric vision to sequences of actions for household tasks. ALFRED includes long, compositional tasks with nonreversible state changes to shrink the gap between research benchmarks and real-world applications. ALFRED consists of expert demonstrations in interactive visual environments for 25k natural language directives. These directives contain both high-level goals like "Rinse off a mug and place it in the coffee maker." and low-level language instructions like "Walk to the coffee maker on the right." ALFRED tasks are more complex in terms of sequence length, action space, and language than existing visionand-language task datasets. We show that a baseline model based on recent embodied vision-and-language tasks performs poorly on ALFRED, suggesting that there is significant room for developing innovative grounded visual language understanding models with this benchmark.
translated by 谷歌翻译
在人类空间中运营的机器人必须能够与人的自然语言互动,既有理解和执行指示,也可以使用对话来解决歧义并从错误中恢复。为此,我们介绍了教学,一个超过3,000人的互动对话的数据集,以完成模拟中的家庭任务。一个有关任务的Oracle信息的指挥官以自然语言与追随者通信。追随者通过环境导航并与环境进行互动,以完成从“咖啡”到“准备早餐”的复杂性不同的任务,提出问题并从指挥官获取其他信息。我们提出三个基准使用教学研究体现了智能挑战,我们评估了对话理解,语言接地和任务执行中的初始模型的能力。
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
在线自主代理能够利用各种潜在的任务知识来源;但是,目前的方法总是只关注一两个。在这里,我们调查了利用多样化知识源以一记模拟的家用移动机器人的新任务学习的挑战和影响。在SOAR认知体系结构中开发的最终代理使用以下域和任务知识来源:与环境的互动,任务执行和规划知识,人类自然语言指导以及从大语言模型(GPT-3)检索到的响应。我们探讨了这些知识来源的不同贡献,并在学习正确的任务知识,人力工作量和计算成本方面评估了不同组合的性能。结合所有来源的结果表明,整合可以在计算成本和人力工作量方面改善一声任务学习。
translated by 谷歌翻译
任务计划可能需要定义有关机器人需要采取行动的世界的无数领域知识。为了改善这项工作,可以使用大型语言模型(LLM)在任务计划期间为潜在的下一个操作评分,甚至直接生成动作序列,鉴于没有其他域信息的自然语言指令。但是,这样的方法要么需要列举所有可能的下一步评分,要么生成可能包含在当前机器人中给定机器人上不可能操作的自由形式文本。我们提出了一个程序化的LLM提示结构,该结构能够跨越位置环境,机器人功能和任务的计划生成功能。我们的关键见解是提示LLM具有环境中可用操作和对象的类似程序的规格,以及可以执行的示例程序。我们通过消融实验提出了有关迅速结构和生成约束的具体建议,证明了虚拟屋家庭任务中最先进的成功率,并将我们的方法部署在桌面任务的物理机器人组上。网站progprompt.github.io
translated by 谷歌翻译
机器人导航的目标条件政策可以在大型未注释的数据集上进行培训,从而为现实世界中的设置提供了良好的概括。但是,尤其是在指定目标需要图像的基于视觉的设置中,这是一个不自然的界面。语言为与机器人的通信提供了一种更方便的方式,但是现代方法通常需要以语言描述注释的轨迹的形式进行昂贵的监督。我们提出了一个用于机器人导航的系统,该系统享受着未注释的大型轨迹数据集培训的好处,同时仍为用户提供高级接口。我们没有在数据集之后使用标记的指令,而是表明可以完全从预先训练的导航模型(VING),图像语言关联(剪辑)和语言建模(GPT-3)中构建这样的系统,而无需任何微调或语言宣布的机器人数据。我们将LM-NAV实例化在现实世界中的移动机器人上,并通过自然语言指令通过复杂的室外环境演示长途导航。有关我们的实验的视频,代码发布和在浏览器中运行的交互式COLAB笔记本,请查看我们的项目页面https://sites.google.com/view/lmnav
translated by 谷歌翻译
已经证明,经过代码完成培训的大型语言模型(LLMS)能够合成DocStrings的简单Python程序[1]。我们发现这些代码编写的LLM可以被重新使用以编写机器人策略代码,给定自然语言命令。具体而言,策略代码可以表达处理感知输出的功能或反馈循环(例如,从对象检测器[2],[3])并参数化控制原始API。当作为输入提供了几个示例命令(格式为注释)后,然后是相应的策略代码(通过少量提示),LLMS可以接收新命令并自主重新编写API调用以分别生成新的策略代码。通过链接经典的逻辑结构并引用第三方库(例如,numpy,shapely)执行算术,以这种方式使用的LLM可以编写(i)(i)表现出空间几何推理的机器人策略,(ii)(ii)将其推广到新的说明和新指令和新指令和(iii)根据上下文(即行为常识)规定模棱两可的描述(例如“更快”)的精确值(例如,速度)。本文将代码作为策略介绍:语言模型生成程序的以机器人为中心的形式化(LMP),该程序可以代表反应性策略(例如阻抗控制器),以及基于Waypoint的策略(基于远见的选择,基于轨迹,基于轨迹,控制),在多个真实的机器人平台上展示。我们方法的核心是促使层次代码 - 代码(递归定义未定义的功能),该代码可以编写更复杂的代码,还可以改善最新的代码,以解决HOMANEVAL [1]基准中的39.8%的问题。代码和视频可从https://code-as-policies.github.io获得。
translated by 谷歌翻译
在视觉和语言导航(VLN)中,按照自然语言指令在现实的3D环境中需要具体的代理。现有VLN方法的一个主要瓶颈是缺乏足够的培训数据,从而导致对看不见的环境的概括不令人满意。虽然通常会手动收集VLN数据,但这种方法很昂贵,并且可以防止可扩展性。在这项工作中,我们通过建议从HM3D自动创建900个未标记的3D建筑物的大规模VLN数据集来解决数据稀缺问题。我们为每个建筑物生成一个导航图,并通过交叉视图一致性从2D传输对象预测,从2D传输伪3D对象标签。然后,我们使用伪对象标签来微调一个预处理的语言模型,作为减轻教学生成中跨模式差距的提示。在导航环境和说明方面,我们生成的HM3D-AUTOVLN数据集是比现有VLN数据集大的数量级。我们通过实验表明,HM3D-AUTOVLN显着提高了所得VLN模型的概括能力。在SPL指标上,我们的方法分别在Reverie和DataSet的看不见的验证分裂分别对艺术的状态提高了7.1%和8.1%。
translated by 谷歌翻译
大型语言模型可以编码有关世界的大量语义知识。这种知识对于旨在采取自然语言表达的高级,时间扩展的指示的机器人可能非常有用。但是,语言模型的一个重大弱点是,它们缺乏现实世界的经验,这使得很难利用它们在给定的体现中进行决策。例如,要求语言模型描述如何清洁溢出物可能会导致合理的叙述,但是它可能不适用于需要在特定环境中执行此任务的特定代理商(例如机器人)。我们建议通过预处理的技能来提供现实世界的基础,这些技能用于限制模型以提出可行且在上下文上适当的自然语言动作。机器人可以充当语​​言模型的“手和眼睛”,而语言模型可以提供有关任务的高级语义知识。我们展示了如何将低级技能与大语言模型结合在一起,以便语言模型提供有关执行复杂和时间扩展说明的过程的高级知识,而与这些技能相关的价值功能则提供了连接必要的基础了解特定的物理环境。我们在许多现实世界的机器人任务上评估了我们的方法,我们表明了对现实世界接地的需求,并且这种方法能够在移动操纵器上完成长远,抽象的自然语言指令。该项目的网站和视频可以在https://say-can.github.io/上找到。
translated by 谷歌翻译
在工厂或房屋等环境中协助我们的机器人必须学会使用对象作为执行任务的工具,例如使用托盘携带对象。我们考虑了学习常识性知识何时可能有用的问题,以及如何与其他工具一起使用其使用以完成由人类指示的高级任务。具体而言,我们引入了一种新型的神经模型,称为Tooltango,该模型首先预测要使用的下一个工具,然后使用此信息来预测下一项动作。我们表明,该联合模型可以告知学习精细的策略,从而使机器人可以顺序使用特定工具,并在使模型更加准确的情况下增加了重要价值。 Tooltango使用图神经网络编码世界状态,包括对象和它们之间的符号关系,并使用人类教师的演示进行了培训,这些演示是指导物理模拟器中的虚拟机器人的演示。该模型学会了使用目标和动作历史的知识来参加场景,最终将符号动作解码为执行。至关重要的是,我们解决了缺少一些已知工具的看不见的环境的概括,但是存在其他看不见的工具。我们表明,通过通过从知识库中得出的预训练的嵌入来增强环境的表示,该模型可以有效地将其推广到新的环境中。实验结果表明,在预测具有看不见对象的新型环境中模拟移动操纵器的成功符号计划时,至少48.8-58.1%的绝对改善对基准的绝对改善。这项工作朝着使机器人能够快速合成复杂任务的强大计划的方向,尤其是在新颖的环境中
translated by 谷歌翻译
自然语言提供可访问和富有富有态度的界面,以指定机器人代理的长期任务。但是,非专家可能会使用高级指令指定此类任务,其中通过多个抽象层摘要通过特定的机器人操作。我们建议将语言和机器人行动之间的这种差距延长长的执行视野是持久的表示。我们提出了一种持久的空间语义表示方法,并展示它是如何构建执行分层推理的代理,以有效执行长期任务。尽管完全避免了常用的逐步说明,我们评估了我们对阿尔弗雷德基准的方法并实现了最先进的结果。
translated by 谷歌翻译
语言模型(LMS)被证明具有对物理世界的常识知识,这对于在日常情况下完成任务至关重要。但是,LMS是否有能力为具体任务生成扎根的可执行计划,这仍然是一个悬而未决的问题。这是非常具有挑战性的,因为LMS没有“眼睛”或“手”来感知现实的环境。在这项工作中,我们展示了有关这个重要研究问题的第一个研究。我们首先提出了一个名为G-Planet的新型问题公式,它将其作为输入一个高级目标和在特定环境中的对象表。预期输出是一个计划,该计划包括逐步指令供代理执行。为了实现此问题的研究,我们建立了一个评估协议,并设计了一个专门的指标来评估计划的质量。在我们的广泛实验中,我们表明,为编码环境添加扁平表并使用迭代解码策略都可以提高LMS的基础计划能力。我们对结果的分析也导致有趣的非平凡发现。
translated by 谷歌翻译
大型语言模型(LLM)从人类的指示中解开了任务计划的新功能。但是,事先尝试将LLMS应用于现实世界的机器人任务受到周围场景中缺乏接地的限制。在本文中,我们开发了NLMAP,这是一个开放式摄影和可查询场景表示,以解决此问题。 NLMAP是一个框架,可以将上下文信息收集到LLM计划者中,从而在生成上下文条件条件计划之前,可以在场景中查看和查询可用的对象。 NLMAP首先使用视觉语言模型(VLM)建立自然语言可查询场景表示。基于LLM的对象建议模块解析指令并提出涉及的对象,以查询场景表示以获取对象可用性和位置。然后,LLM规划师计划提供有关场景的此类信息。 NLMAP允许机器人在没有固定的对象列表或可执行选项的情况下操作,从而使真实的机器人操作无法通过以前的方法实现。项目网站:https://nlmap-saycan.github.io
translated by 谷歌翻译
基于学习的培训方法的方法通常需要大量包含现实布局的高质量场景并支持有意义的互动。然而,用于体现AI(EAI)挑战的当前模拟器仅提供具有有限数量的布局的模拟室内场景。本文呈现出发光,第一研究框架采用最先进的室内场景综合算法,以在体现AI挑战的情况下生成大规模模拟场景。此外,我们通过支持复杂的家庭任务的能力自动和定量地评估生成的室内场景的质量。发光结合了一种新颖的场景生成算法(受限的随机现场生成(CSSG)),实现了具有人类设计的场景的竞争性能。在发光,EAI任务执行器,任务指令生成模块和视频呈现工具包中可以集体为实现的AI代理商的培训和评估集体为新场景产生大量多模式数据集。广泛的实验结果表明了发光产生的数据的有效性,使对泛化和鲁棒性的体现特性进行全面评估。
translated by 谷歌翻译
We present a new AI task -Embodied Question Answering (EmbodiedQA) -where an agent is spawned at a random location in a 3D environment and asked a question ('What color is the car?'). In order to answer, the agent must first intelligently navigate to explore the environment, gather information through first-person (egocentric) vision, and then answer the question ('orange'). This challenging task requires a range of AI skills -active perception, language understanding, goal-driven navigation, commonsense reasoning, and grounding of language into actions. In this work, we develop the environments, end-to-end-trained reinforcement learning agents, and evaluation protocols for EmbodiedQA.
translated by 谷歌翻译