在人类空间中运营的机器人必须能够与人的自然语言互动,既有理解和执行指示,也可以使用对话来解决歧义并从错误中恢复。为此,我们介绍了教学,一个超过3,000人的互动对话的数据集,以完成模拟中的家庭任务。一个有关任务的Oracle信息的指挥官以自然语言与追随者通信。追随者通过环境导航并与环境进行互动,以完成从“咖啡”到“准备早餐”的复杂性不同的任务,提出问题并从指挥官获取其他信息。我们提出三个基准使用教学研究体现了智能挑战,我们评估了对话理解,语言接地和任务执行中的初始模型的能力。
translated by 谷歌翻译
建立一个对话体现的代理执行现实生活任务一直是一个长期而又具有挑战性的研究目标,因为它需要有效的人类代理沟通,多模式理解,远程顺序决策等。传统的符号方法具有扩展和概括问题,而端到端的深度学习模型则遭受数据稀缺和高任务复杂性的影响,并且通常很难解释。为了从两全其美的世界中受益,我们提出了一个神经符号常识性推理(JARVIS)框架,用于模块化,可推广和可解释的对话体现的药物。首先,它通过提示大型语言模型(LLM)来获得符号表示,以了解语言理解和次目标计划,并通过从视觉观察中构建语义图。然后,基于任务和动作级别的常识,次目标计划和行动生成的符号模块。在Teach数据集上进行的大量实验验证了我们的JARVIS框架的功效和效率,该框架在所有三个基于对话框的具体任务上实现了最新的(SOTA)结果,包括对话记录(EDH)的执行,对话框的轨迹, (TFD)和两个代理任务完成(TATC)(例如,我们的方法将EDH看不见的成功率从6.1 \%\%提高到15.8 \%)。此外,我们系统地分析了影响任务绩效的基本因素,并在几个射击设置中证明了我们方法的优越性。我们的Jarvis模型在Alexa奖Simbot公共基准挑战赛中排名第一。
translated by 谷歌翻译
We present ALFRED (Action Learning From Realistic Environments and Directives), a benchmark for learning a mapping from natural language instructions and egocentric vision to sequences of actions for household tasks. ALFRED includes long, compositional tasks with nonreversible state changes to shrink the gap between research benchmarks and real-world applications. ALFRED consists of expert demonstrations in interactive visual environments for 25k natural language directives. These directives contain both high-level goals like "Rinse off a mug and place it in the coffee maker." and low-level language instructions like "Walk to the coffee maker on the right." ALFRED tasks are more complex in terms of sequence length, action space, and language than existing visionand-language task datasets. We show that a baseline model based on recent embodied vision-and-language tasks performs poorly on ALFRED, suggesting that there is significant room for developing innovative grounded visual language understanding models with this benchmark.
translated by 谷歌翻译
体现的代理需要能够在自然语言中互动理解任务描述,并提出适当的后续问题以获取必要的信息,以有效地成功完成各种用户的任务。在这项工作中,我们提出了一组对话框,用于建模此类对话框,并注释教学数据集,其中包括3,000多个位置,以任务为导向的对话(总计包含39.5k个话语),并具有对话框ACT。 Teach-da是对Dialog ACT的第一个大型数据集注释,用于具体任务完成。此外,我们在培训模型中证明了该注释的数据集在标记给定话语的对话框行为中的使用,预测给定对话框历史记录的下一个响应的对话框行为,并使用对话框行为指导代理商的非第二语言行为。特别是,我们对对话记录任务的教学执行执行的实验,该模型预测在体现任务完成环境中要执行的低级操作的顺序,证明对话框行为可以将最终任务成功提高2分,以提高最终任务成功率到没有对话行为的系统。
translated by 谷歌翻译
语言指导的体现了AI基准,要求代理导航环境并操纵对象通常允许单向通信:人类用户向代理提供了自然语言命令,而代理只能被动地遵循命令。我们介绍了基于Alfred基准测试的基准测试后的拨号式拨号。Dialfred允许代理商积极向人类用户提出问题;代理使用用户响应中的其他信息来更好地完成其任务。我们发布了一个具有53K任务的问题和答案的人类注销数据集,以及一个可以回答问题的甲骨文。为了解决Dialfred,我们提出了一个提问者绩效框架,其中发问者通过人类通知的数据进行了预训练,并通过增强学习进行了微调。我们将拨号拨入公开,并鼓励研究人员提出和评估他们的解决方案,以构建支持对话的体现代理。
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
我们研究了开发自主代理的问题,这些自主代理可以遵循人类的指示来推断和执行一系列行动以完成基础任务。近年来取得了重大进展,尤其是对于短范围的任务。但是,当涉及具有扩展动作序列的长匹马任务时,代理可以轻松忽略某些指令或陷入长长指令中间,并最终使任务失败。为了应对这一挑战,我们提出了一个基于模型的里程碑的任务跟踪器(M-Track),以指导代理商并监视其进度。具体而言,我们提出了一个里程碑构建器,该建筑商通过导航和交互里程碑标记指令,代理商需要逐步完成,以及一个系统地检查代理商当前里程碑的进度并确定何时继续进行下一个的里程碑检查器。在具有挑战性的Alfred数据集上,我们的M轨道在两个竞争基本模型中,未见成功率的相对成功率显着提高了33%和52%。
translated by 谷歌翻译
表演家庭和办公室任务的语言引导机器人必须导航和与世界互动。接地语言指示视觉观察和携带环境的行动是一个开放的挑战。我们呈现体现伯尔特(Embert),一种基于变压器的模型,可以参加跨长时间视野的高维,多模态输入进行语言条件任务完成。此外,我们通过引入Embert培训的对象导航目标来介绍用于非交互式代理的成功对象的导航模型和用于非交互式代理和语言引导的视觉任务完成基准。我们在Alfred基准测试中实现了竞争性能,eMbert标志着一个基于一个基于变压器的模型,以成功处理Alfred的长地平线,密集,多模态历史,以及使用以对象为中心的导航目标的第一个Alfred模型。
translated by 谷歌翻译
最近的作品表明,如何将大语言模型(LLM)的推理能力应用于自然语言处理以外的领域,例如机器人的计划和互动。这些具体的问题要求代理商了解世界上许多语义方面:可用技能的曲目,这些技能如何影响世界以及对世界的变化如何映射回该语言。在体现环境中规划的LLMS不仅需要考虑要做什么技能,还需要考虑如何以及何时进行操作 - 答案随着时间的推移而变化,以响应代理商自己的选择。在这项工作中,我们调查了在这种体现的环境中使用的LLM在多大程度上可以推论通过自然语言提供的反馈来源,而无需任何其他培训。我们建议,通过利用环境反馈,LLM能够形成内部独白,使他们能够在机器人控制方案中进行更丰富的处理和计划。我们研究了各种反馈来源,例如成功检测,场景描述和人类互动。我们发现,闭环语言反馈显着改善了三个领域的高级指导完成,包括模拟和真实的桌面顶部重新排列任务以及现实世界中厨房环境中的长途移动操作任务。
translated by 谷歌翻译
在工厂或房屋等环境中协助我们的机器人必须学会使用对象作为执行任务的工具,例如使用托盘携带对象。我们考虑了学习常识性知识何时可能有用的问题,以及如何与其他工具一起使用其使用以完成由人类指示的高级任务。具体而言,我们引入了一种新型的神经模型,称为Tooltango,该模型首先预测要使用的下一个工具,然后使用此信息来预测下一项动作。我们表明,该联合模型可以告知学习精细的策略,从而使机器人可以顺序使用特定工具,并在使模型更加准确的情况下增加了重要价值。 Tooltango使用图神经网络编码世界状态,包括对象和它们之间的符号关系,并使用人类教师的演示进行了培训,这些演示是指导物理模拟器中的虚拟机器人的演示。该模型学会了使用目标和动作历史的知识来参加场景,最终将符号动作解码为执行。至关重要的是,我们解决了缺少一些已知工具的看不见的环境的概括,但是存在其他看不见的工具。我们表明,通过通过从知识库中得出的预训练的嵌入来增强环境的表示,该模型可以有效地将其推广到新的环境中。实验结果表明,在预测具有看不见对象的新型环境中模拟移动操纵器的成功符号计划时,至少48.8-58.1%的绝对改善对基准的绝对改善。这项工作朝着使机器人能够快速合成复杂任务的强大计划的方向,尤其是在新颖的环境中
translated by 谷歌翻译
This study focuses on embodied agents that can follow natural language instructions to complete complex tasks in a visually-perceived environment. Existing methods rely on a large amount of (instruction, gold trajectory) pairs to learn a good policy. The high data cost and poor sample efficiency prevents the development of versatile agents that are capable of many tasks and can learn new tasks quickly. In this work, we propose a novel method, LLM-Planner, that harnesses the power of large language models (LLMs) such as GPT-3 to do few-shot planning for embodied agents. We further propose a simple but effective way to enhance LLMs with physical grounding to generate plans that are grounded in the current environment. Experiments on the ALFRED dataset show that our method can achieve very competitive few-shot performance, even outperforming several recent baselines that are trained using the full training data despite using less than 0.5% of paired training data. Existing methods can barely complete any task successfully under the same few-shot setting. Our work opens the door for developing versatile and sample-efficient embodied agents that can quickly learn many tasks.
translated by 谷歌翻译
A robot that can carry out a natural-language instruction has been a dream since before the Jetsons cartoon series imagined a life of leisure mediated by a fleet of attentive robot helpers. It is a dream that remains stubbornly distant. However, recent advances in vision and language methods have made incredible progress in closely related areas. This is significant because a robot interpreting a naturallanguage navigation instruction on the basis of what it sees is carrying out a vision and language process that is similar to Visual Question Answering. Both tasks can be interpreted as visually grounded sequence-to-sequence translation problems, and many of the same methods are applicable. To enable and encourage the application of vision and language methods to the problem of interpreting visuallygrounded navigation instructions, we present the Matter-port3D Simulator -a large-scale reinforcement learning environment based on real imagery [11]. Using this simulator, which can in future support a range of embodied vision and language tasks, we provide the first benchmark dataset for visually-grounded natural language navigation in real buildings -the Room-to-Room (R2R) dataset 1 .1 https://bringmeaspoon.org Instruction: Head upstairs and walk past the piano through an archway directly in front. Turn right when the hallway ends at pictures and table. Wait by the moose antlers hanging on the wall.
translated by 谷歌翻译
基于学习的培训方法的方法通常需要大量包含现实布局的高质量场景并支持有意义的互动。然而,用于体现AI(EAI)挑战的当前模拟器仅提供具有有限数量的布局的模拟室内场景。本文呈现出发光,第一研究框架采用最先进的室内场景综合算法,以在体现AI挑战的情况下生成大规模模拟场景。此外,我们通过支持复杂的家庭任务的能力自动和定量地评估生成的室内场景的质量。发光结合了一种新颖的场景生成算法(受限的随机现场生成(CSSG)),实现了具有人类设计的场景的竞争性能。在发光,EAI任务执行器,任务指令生成模块和视频呈现工具包中可以集体为实现的AI代理商的培训和评估集体为新场景产生大量多模式数据集。广泛的实验结果表明了发光产生的数据的有效性,使对泛化和鲁棒性的体现特性进行全面评估。
translated by 谷歌翻译
大型语言模型可以编码有关世界的大量语义知识。这种知识对于旨在采取自然语言表达的高级,时间扩展的指示的机器人可能非常有用。但是,语言模型的一个重大弱点是,它们缺乏现实世界的经验,这使得很难利用它们在给定的体现中进行决策。例如,要求语言模型描述如何清洁溢出物可能会导致合理的叙述,但是它可能不适用于需要在特定环境中执行此任务的特定代理商(例如机器人)。我们建议通过预处理的技能来提供现实世界的基础,这些技能用于限制模型以提出可行且在上下文上适当的自然语言动作。机器人可以充当语​​言模型的“手和眼睛”,而语言模型可以提供有关任务的高级语义知识。我们展示了如何将低级技能与大语言模型结合在一起,以便语言模型提供有关执行复杂和时间扩展说明的过程的高级知识,而与这些技能相关的价值功能则提供了连接必要的基础了解特定的物理环境。我们在许多现实世界的机器人任务上评估了我们的方法,我们表明了对现实世界接地的需求,并且这种方法能够在移动操纵器上完成长远,抽象的自然语言指令。该项目的网站和视频可以在https://say-can.github.io/上找到。
translated by 谷歌翻译
We present a new AI task -Embodied Question Answering (EmbodiedQA) -where an agent is spawned at a random location in a 3D environment and asked a question ('What color is the car?'). In order to answer, the agent must first intelligently navigate to explore the environment, gather information through first-person (egocentric) vision, and then answer the question ('orange'). This challenging task requires a range of AI skills -active perception, language understanding, goal-driven navigation, commonsense reasoning, and grounding of language into actions. In this work, we develop the environments, end-to-end-trained reinforcement learning agents, and evaluation protocols for EmbodiedQA.
translated by 谷歌翻译
创建可以自然与人类互动的代理是人工智能(AI)研究中的共同目标。但是,评估这些互动是具有挑战性的:收集在线人类代理相互作用缓慢而昂贵,但更快的代理指标通常与交互式评估相关。在本文中,我们评估了这些现有评估指标的优点,并提出了一种新颖的评估方法,称为标准化测试套件(STS)。 STS使用从真实人类交互数据中挖掘出的行为方案。代理商请参阅重播方案上下文,接收指令,然后将控制权控制以脱机完成交互。记录这些代理的延续并将其发送给人类注释者以将其标记为成功或失败,并且根据其成功的连续性比例对代理进行排名。最终的ST是自然主义相互作用的快速,控制,可解释的和代表的。总的来说,STS巩固了我们许多标准评估指标中所需的许多值,从而使我们能够加速研究进展,以生产可以自然与人类互动的代理。可以在https://youtu.be/yr1tnggorgq上找到视频。
translated by 谷歌翻译
已经证明,经过代码完成培训的大型语言模型(LLMS)能够合成DocStrings的简单Python程序[1]。我们发现这些代码编写的LLM可以被重新使用以编写机器人策略代码,给定自然语言命令。具体而言,策略代码可以表达处理感知输出的功能或反馈循环(例如,从对象检测器[2],[3])并参数化控制原始API。当作为输入提供了几个示例命令(格式为注释)后,然后是相应的策略代码(通过少量提示),LLMS可以接收新命令并自主重新编写API调用以分别生成新的策略代码。通过链接经典的逻辑结构并引用第三方库(例如,numpy,shapely)执行算术,以这种方式使用的LLM可以编写(i)(i)表现出空间几何推理的机器人策略,(ii)(ii)将其推广到新的说明和新指令和新指令和(iii)根据上下文(即行为常识)规定模棱两可的描述(例如“更快”)的精确值(例如,速度)。本文将代码作为策略介绍:语言模型生成程序的以机器人为中心的形式化(LMP),该程序可以代表反应性策略(例如阻抗控制器),以及基于Waypoint的策略(基于远见的选择,基于轨迹,基于轨迹,控制),在多个真实的机器人平台上展示。我们方法的核心是促使层次代码 - 代码(递归定义未定义的功能),该代码可以编写更复杂的代码,还可以改善最新的代码,以解决HOMANEVAL [1]基准中的39.8%的问题。代码和视频可从https://code-as-policies.github.io获得。
translated by 谷歌翻译
我们研究了从机器人交互的大型离线数据集学习一系列基于视觉的操纵任务的问题。为了实现这一目标,人类需要简单有效地将任务指定给机器人。目标图像是一种流行的任务规范形式,因为它们已经在机器人的观察空间接地。然而,目标图像也有许多缺点:它们对人类提供的不方便,它们可以通过提供导致稀疏奖励信号的所需行为,或者在非目标达到任务的情况下指定任务信息。自然语言为任务规范提供了一种方便而灵活的替代方案,而是随着机器人观察空间的接地语言挑战。为了可扩展地学习此基础,我们建议利用具有人群源语言标签的离线机器人数据集(包括高度最佳,自主收集的数据)。使用此数据,我们学习一个简单的分类器,该分类器预测状态的更改是否完成了语言指令。这提供了一种语言调节奖励函数,然后可以用于离线多任务RL。在我们的实验中,我们发现,在语言条件的操作任务中,我们的方法优于目标 - 图像规格和语言条件仿制技术超过25%,并且能够从自然语言中执行Visuomotor任务,例如“打开右抽屉“和”移动订书机“,在弗兰卡·埃米卡熊猫机器人上。
translated by 谷歌翻译
我们介绍了Sparrow,这是一个寻求信息的对话代理,与提示的语言模型基线相比,训练有素,更有帮助,正确和无害。我们使用从人类反馈中的强化学习来培训我们的模型,以帮助人类评估者判断代理人的行为。首先,为了使我们的代理人更有帮助和无害,我们将良好对话的要求分解为代理人应遵循的自然语言规则,并分别向评估者询问每个规则。我们证明,这种崩溃使我们能够收集对代理行为的更多针对性的人类判断,并允许更有效的规则条件奖励模型。其次,我们的代理商在收集对模型声明的偏好判决时提供了支持事实主张的来源的证据。对于事实问题,麻雀提供的证据支持了78%的时间。比基线比基线更享受麻雀,同时对人类的对抗性探测更具弹性,在探测时只有8%的时间违反了我们的规则。最后,我们进行了广泛的分析,表明尽管我们的模型学会遵守我们的规则,但它可以表现出分布偏见。
translated by 谷歌翻译
这项工作提出了一个新的对话数据集,即cookdial,该数据集促进了对任务知识了解的面向任务的对话系统的研究。该语料库包含260个以人类对任务为导向的对话框,其中代理给出了配方文档,指导用户烹饪菜肴。 Cookdial中的对话框展示了两个独特的功能:(i)对话流与支持文档之间的程序对齐; (ii)复杂的代理决策涉及分割长句子,解释硬说明并在对话框上下文中解决核心。此外,我们在假定的面向任务的对话框系统中确定了三个具有挑战性的(子)任务:(1)用户问题理解,(2)代理操作框架预测和(3)代理响应生成。对于这些任务中的每一个,我们都会开发一个神经基线模型,我们在cookdial数据集上进行了评估。我们公开发布烹饪数据集,包括对话框和食谱文档的丰富注释,以刺激对特定于域的文档接地对话框系统的进一步研究。
translated by 谷歌翻译