大型语言模型(LLM)从人类的指示中解开了任务计划的新功能。但是,事先尝试将LLMS应用于现实世界的机器人任务受到周围场景中缺乏接地的限制。在本文中,我们开发了NLMAP,这是一个开放式摄影和可查询场景表示,以解决此问题。 NLMAP是一个框架,可以将上下文信息收集到LLM计划者中,从而在生成上下文条件条件计划之前,可以在场景中查看和查询可用的对象。 NLMAP首先使用视觉语言模型(VLM)建立自然语言可查询场景表示。基于LLM的对象建议模块解析指令并提出涉及的对象,以查询场景表示以获取对象可用性和位置。然后,LLM规划师计划提供有关场景的此类信息。 NLMAP允许机器人在没有固定的对象列表或可执行选项的情况下操作,从而使真实的机器人操作无法通过以前的方法实现。项目网站:https://nlmap-saycan.github.io
translated by 谷歌翻译
最近的作品表明,如何将大语言模型(LLM)的推理能力应用于自然语言处理以外的领域,例如机器人的计划和互动。这些具体的问题要求代理商了解世界上许多语义方面:可用技能的曲目,这些技能如何影响世界以及对世界的变化如何映射回该语言。在体现环境中规划的LLMS不仅需要考虑要做什么技能,还需要考虑如何以及何时进行操作 - 答案随着时间的推移而变化,以响应代理商自己的选择。在这项工作中,我们调查了在这种体现的环境中使用的LLM在多大程度上可以推论通过自然语言提供的反馈来源,而无需任何其他培训。我们建议,通过利用环境反馈,LLM能够形成内部独白,使他们能够在机器人控制方案中进行更丰富的处理和计划。我们研究了各种反馈来源,例如成功检测,场景描述和人类互动。我们发现,闭环语言反馈显着改善了三个领域的高级指导完成,包括模拟和真实的桌面顶部重新排列任务以及现实世界中厨房环境中的长途移动操作任务。
translated by 谷歌翻译
大型语言模型可以编码有关世界的大量语义知识。这种知识对于旨在采取自然语言表达的高级,时间扩展的指示的机器人可能非常有用。但是,语言模型的一个重大弱点是,它们缺乏现实世界的经验,这使得很难利用它们在给定的体现中进行决策。例如,要求语言模型描述如何清洁溢出物可能会导致合理的叙述,但是它可能不适用于需要在特定环境中执行此任务的特定代理商(例如机器人)。我们建议通过预处理的技能来提供现实世界的基础,这些技能用于限制模型以提出可行且在上下文上适当的自然语言动作。机器人可以充当语​​言模型的“手和眼睛”,而语言模型可以提供有关任务的高级语义知识。我们展示了如何将低级技能与大语言模型结合在一起,以便语言模型提供有关执行复杂和时间扩展说明的过程的高级知识,而与这些技能相关的价值功能则提供了连接必要的基础了解特定的物理环境。我们在许多现实世界的机器人任务上评估了我们的方法,我们表明了对现实世界接地的需求,并且这种方法能够在移动操纵器上完成长远,抽象的自然语言指令。该项目的网站和视频可以在https://say-can.github.io/上找到。
translated by 谷歌翻译
已经证明,经过代码完成培训的大型语言模型(LLMS)能够合成DocStrings的简单Python程序[1]。我们发现这些代码编写的LLM可以被重新使用以编写机器人策略代码,给定自然语言命令。具体而言,策略代码可以表达处理感知输出的功能或反馈循环(例如,从对象检测器[2],[3])并参数化控制原始API。当作为输入提供了几个示例命令(格式为注释)后,然后是相应的策略代码(通过少量提示),LLMS可以接收新命令并自主重新编写API调用以分别生成新的策略代码。通过链接经典的逻辑结构并引用第三方库(例如,numpy,shapely)执行算术,以这种方式使用的LLM可以编写(i)(i)表现出空间几何推理的机器人策略,(ii)(ii)将其推广到新的说明和新指令和新指令和(iii)根据上下文(即行为常识)规定模棱两可的描述(例如“更快”)的精确值(例如,速度)。本文将代码作为策略介绍:语言模型生成程序的以机器人为中心的形式化(LMP),该程序可以代表反应性策略(例如阻抗控制器),以及基于Waypoint的策略(基于远见的选择,基于轨迹,基于轨迹,控制),在多个真实的机器人平台上展示。我们方法的核心是促使层次代码 - 代码(递归定义未定义的功能),该代码可以编写更复杂的代码,还可以改善最新的代码,以解决HOMANEVAL [1]基准中的39.8%的问题。代码和视频可从https://code-as-policies.github.io获得。
translated by 谷歌翻译
机器人导航的目标条件政策可以在大型未注释的数据集上进行培训,从而为现实世界中的设置提供了良好的概括。但是,尤其是在指定目标需要图像的基于视觉的设置中,这是一个不自然的界面。语言为与机器人的通信提供了一种更方便的方式,但是现代方法通常需要以语言描述注释的轨迹的形式进行昂贵的监督。我们提出了一个用于机器人导航的系统,该系统享受着未注释的大型轨迹数据集培训的好处,同时仍为用户提供高级接口。我们没有在数据集之后使用标记的指令,而是表明可以完全从预先训练的导航模型(VING),图像语言关联(剪辑)和语言建模(GPT-3)中构建这样的系统,而无需任何微调或语言宣布的机器人数据。我们将LM-NAV实例化在现实世界中的移动机器人上,并通过自然语言指令通过复杂的室外环境演示长途导航。有关我们的实验的视频,代码发布和在浏览器中运行的交互式COLAB笔记本,请查看我们的项目页面https://sites.google.com/view/lmnav
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
This study focuses on embodied agents that can follow natural language instructions to complete complex tasks in a visually-perceived environment. Existing methods rely on a large amount of (instruction, gold trajectory) pairs to learn a good policy. The high data cost and poor sample efficiency prevents the development of versatile agents that are capable of many tasks and can learn new tasks quickly. In this work, we propose a novel method, LLM-Planner, that harnesses the power of large language models (LLMs) such as GPT-3 to do few-shot planning for embodied agents. We further propose a simple but effective way to enhance LLMs with physical grounding to generate plans that are grounded in the current environment. Experiments on the ALFRED dataset show that our method can achieve very competitive few-shot performance, even outperforming several recent baselines that are trained using the full training data despite using less than 0.5% of paired training data. Existing methods can barely complete any task successfully under the same few-shot setting. Our work opens the door for developing versatile and sample-efficient embodied agents that can quickly learn many tasks.
translated by 谷歌翻译
感知,规划,估算和控制的当代方法允许机器人在不确定,非结构化环境中的远程代理中稳健运行。此进度现在创造了机器人不仅在隔离,而且在我们的复杂环境中运行的机器人。意识到这个机会需要一种高效且灵活的媒介,人类可以与协作机器人沟通。自然语言提供了一种这样的媒体,通过对自然语言理解的统计方法的重大进展,现在能够解释各种自由形式命令。然而,大多数当代方法需要机器人环境的详细,现有的空间语义地图,这些环境模拟了话语可能引用的可能引用的空间。因此,当机器人部署在新的,先前未知或部分观察到的环境中时,这些方法发生故障,特别是当环境的心理模型在人类运营商和机器人之间不同时。本文提供了一种新的学习框架的全面描述,允许现场和服务机器人解释并正确执行先验未知,非结构化环境中的自然语言指令。对于我们的方法而不是我们的语言作为“传感器” - 在话语中隐含的“传感器” - 推断的空间,拓扑和语义信息,然后利用这些信息来学习在潜在环境模型上的分布。我们将此分布纳入概率,语言接地模型中,并在机器人的动作空间的象征性表示中推断出分布。我们使用模仿学习来确定对环境和行为分布的原因的信仰空间政策。我们通过各种导航和移动操纵实验评估我们的框架。
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
For robots to be generally useful, they must be able to find arbitrary objects described by people (i.e., be language-driven) even without expensive navigation training on in-domain data (i.e., perform zero-shot inference). We explore these capabilities in a unified setting: language-driven zero-shot object navigation (L-ZSON). Inspired by the recent success of open-vocabulary models for image classification, we investigate a straightforward framework, CLIP on Wheels (CoW), to adapt open-vocabulary models to this task without fine-tuning. To better evaluate L-ZSON, we introduce the Pasture benchmark, which considers finding uncommon objects, objects described by spatial and appearance attributes, and hidden objects described relative to visible objects. We conduct an in-depth empirical study by directly deploying 21 CoW baselines across Habitat, RoboTHOR, and Pasture. In total, we evaluate over 90k navigation episodes and find that (1) CoW baselines often struggle to leverage language descriptions, but are proficient at finding uncommon objects. (2) A simple CoW, with CLIP-based object localization and classical exploration -- and no additional training -- matches the navigation efficiency of a state-of-the-art ZSON method trained for 500M steps on Habitat MP3D data. This same CoW provides a 15.6 percentage point improvement in success over a state-of-the-art RoboTHOR ZSON model.
translated by 谷歌翻译
任务计划可能需要定义有关机器人需要采取行动的世界的无数领域知识。为了改善这项工作,可以使用大型语言模型(LLM)在任务计划期间为潜在的下一个操作评分,甚至直接生成动作序列,鉴于没有其他域信息的自然语言指令。但是,这样的方法要么需要列举所有可能的下一步评分,要么生成可能包含在当前机器人中给定机器人上不可能操作的自由形式文本。我们提出了一个程序化的LLM提示结构,该结构能够跨越位置环境,机器人功能和任务的计划生成功能。我们的关键见解是提示LLM具有环境中可用操作和对象的类似程序的规格,以及可以执行的示例程序。我们通过消融实验提出了有关迅速结构和生成约束的具体建议,证明了虚拟屋家庭任务中最先进的成功率,并将我们的方法部署在桌面任务的物理机器人组上。网站progprompt.github.io
translated by 谷歌翻译
在人类空间中运营的机器人必须能够与人的自然语言互动,既有理解和执行指示,也可以使用对话来解决歧义并从错误中恢复。为此,我们介绍了教学,一个超过3,000人的互动对话的数据集,以完成模拟中的家庭任务。一个有关任务的Oracle信息的指挥官以自然语言与追随者通信。追随者通过环境导航并与环境进行互动,以完成从“咖啡”到“准备早餐”的复杂性不同的任务,提出问题并从指挥官获取其他信息。我们提出三个基准使用教学研究体现了智能挑战,我们评估了对话理解,语言接地和任务执行中的初始模型的能力。
translated by 谷歌翻译
与人类在环境中共存的通用机器人必须学会将人类语言与其在一系列日常任务中有用的看法和行动联系起来。此外,他们需要获取各种曲目的一般专用技能,允许通过遵循无约束语言指示来组成长地平任务。在本文中,我们呈现了凯文(从语言和愿景撰写的行动),是一个露天模拟基准,用于学习Long-Horizo​​ n语言条件的任务。我们的目的是使可以开发能够通过船上传感器解决许多机器人操纵任务的代理商,并且仅通过人类语言指定。 Calvin任务在序列长度,动作空间和语言方面更复杂,而不是现有的视觉和语言任务数据集,并支持灵活的传感器套件规范。我们评估零拍摄的代理商以新颖的语言指示以及新的环境和对象。我们表明,基于多语境模仿学习的基线模型在凯文中表现不佳,表明有很大的空间,用于开发创新代理,了解学习将人类语言与这款基准相关的世界模型。
translated by 谷歌翻译
在工厂或房屋等环境中协助我们的机器人必须学会使用对象作为执行任务的工具,例如使用托盘携带对象。我们考虑了学习常识性知识何时可能有用的问题,以及如何与其他工具一起使用其使用以完成由人类指示的高级任务。具体而言,我们引入了一种新型的神经模型,称为Tooltango,该模型首先预测要使用的下一个工具,然后使用此信息来预测下一项动作。我们表明,该联合模型可以告知学习精细的策略,从而使机器人可以顺序使用特定工具,并在使模型更加准确的情况下增加了重要价值。 Tooltango使用图神经网络编码世界状态,包括对象和它们之间的符号关系,并使用人类教师的演示进行了培训,这些演示是指导物理模拟器中的虚拟机器人的演示。该模型学会了使用目标和动作历史的知识来参加场景,最终将符号动作解码为执行。至关重要的是,我们解决了缺少一些已知工具的看不见的环境的概括,但是存在其他看不见的工具。我们表明,通过通过从知识库中得出的预训练的嵌入来增强环境的表示,该模型可以有效地将其推广到新的环境中。实验结果表明,在预测具有看不见对象的新型环境中模拟移动操纵器的成功符号计划时,至少48.8-58.1%的绝对改善对基准的绝对改善。这项工作朝着使机器人能够快速合成复杂任务的强大计划的方向,尤其是在新颖的环境中
translated by 谷歌翻译
物体重新排列最近被出现为机器人操纵的关键能力,具有实用的解决方案,通常涉及物体检测,识别,掌握和高级规划。描述期望场景配置的目标图像是有希望和越来越多的指令模式。一个关键的突出挑战是机器人前面的物体之间的比赛的准确推理,并且在提供的目标图像中看到的那些,其中最近的作品在没有对象特定的培训数据的情况下挣扎。在这项工作中,我们探讨了现有方法在对象之间推断出匹配的能力,因为观察到的目标场景之间的视觉偏移增加。我们发现当前设置的基本限制是源和目标图像必须包含每个对象的相同$ \ texit {实例} $,它限制了实际部署。我们提出了一种新的对象匹配方法,它使用大型预先训练的vision语言模型来匹配交叉实例设置中的对象,通过利用语义以及视觉特征作为更强大,更通用,相似度的衡量标准。我们证明,这在交叉实例设置中提供了大大改进的匹配性能,并且可用于将多对象重新排列与机器人机械手从分享的图像与机器人的场景共享的图像指导。
translated by 谷歌翻译
Humans are excellent at understanding language and vision to accomplish a wide range of tasks. In contrast, creating general instruction-following embodied agents remains a difficult challenge. Prior work that uses pure language-only models lack visual grounding, making it difficult to connect language instructions with visual observations. On the other hand, methods that use pre-trained vision-language models typically come with divided language and visual representations, requiring designing specialized network architecture to fuse them together. We propose a simple yet effective model for robots to solve instruction-following tasks in vision-based environments. Our \ours method consists of a multimodal transformer that encodes visual observations and language instructions, and a policy transformer that predicts actions based on encoded representations. The multimodal transformer is pre-trained on millions of image-text pairs and natural language text, thereby producing generic cross-modal representations of observations and instructions. The policy transformer keeps track of the full history of observations and actions, and predicts actions autoregressively. We show that this unified transformer model outperforms all state-of-the-art pre-trained or trained-from-scratch methods in both single-task and multi-task settings. Our model also shows better model scalability and generalization ability than prior work.
translated by 谷歌翻译
自然语言提供可访问和富有富有态度的界面,以指定机器人代理的长期任务。但是,非专家可能会使用高级指令指定此类任务,其中通过多个抽象层摘要通过特定的机器人操作。我们建议将语言和机器人行动之间的这种差距延长长的执行视野是持久的表示。我们提出了一种持久的空间语义表示方法,并展示它是如何构建执行分层推理的代理,以有效执行长期任务。尽管完全避免了常用的逐步说明,我们评估了我们对阿尔弗雷德基准的方法并实现了最先进的结果。
translated by 谷歌翻译
从语言灵活性和组成性中受益,人类自然打算使用语言来指挥体现的代理,以进行复杂的任务,例如导航和对象操纵。在这项工作中,我们旨在填补最后一英里的体现代理的空白 - 通过遵循人类的指导,例如,“将红杯子移到盒子旁边,同时将其保持直立。”为此,我们介绍了一个自动操纵求解器(AMSolver)模拟器,并基于IT构建视觉和语言操纵基准(VLMBENCH),其中包含有关机器人操纵任务的各种语言说明。具体而言,创建基于模块化规则的任务模板是为了自动生成具有语言指令的机器人演示,包括各种对象形状和外观,动作类型和运动约束。我们还开发了一个基于关键点的模型6D-Cliport,以处理多视图观察和语言输入,并输出一个6个自由度(DOF)动作的顺序。我们希望新的模拟器和基准将促进对语言引导机器人操纵的未来研究。
translated by 谷歌翻译
We present ALFRED (Action Learning From Realistic Environments and Directives), a benchmark for learning a mapping from natural language instructions and egocentric vision to sequences of actions for household tasks. ALFRED includes long, compositional tasks with nonreversible state changes to shrink the gap between research benchmarks and real-world applications. ALFRED consists of expert demonstrations in interactive visual environments for 25k natural language directives. These directives contain both high-level goals like "Rinse off a mug and place it in the coffee maker." and low-level language instructions like "Walk to the coffee maker on the right." ALFRED tasks are more complex in terms of sequence length, action space, and language than existing visionand-language task datasets. We show that a baseline model based on recent embodied vision-and-language tasks performs poorly on ALFRED, suggesting that there is significant room for developing innovative grounded visual language understanding models with this benchmark.
translated by 谷歌翻译
机器人任务说明通常涉及机器人必须在环境中定位(地面)的引用对象。尽管任务意图理解是自然语言理解的重要组成部分,但努力却减少了解决任务时可能出现的歧义的努力。现有作品使用基于视觉的任务接地和歧义检测,适用于固定视图和静态机器人。但是,该问题对移动机器人进行了放大,其中未知的理想视图是未知的。此外,单个视图可能不足以定位给定区域中的所有对象实例,从而导致歧义检测不准确。只有机器人能够传达其面临的歧义,人类干预才能有所帮助。在本文中,我们介绍了doro(对对象的歧义),该系统可以帮助体现的代理在需要时提出合适的查询来消除引用对象的歧义。给定预期对象所处的区域,Doro通过在探索和扫描该区域的同时从多个视图中汇总观察结果来找到对象的所有实例。然后,它使用接地对象实例的信息提出合适的查询。使用AI2thor模拟器进行的实验表明,Doro不仅更准确地检测到歧义,而且还通过从视觉语言接地中获得了更准确的信息来提高冗长的查询。
translated by 谷歌翻译