Deep latent variable models have achieved significant empirical successes in model-based reinforcement learning (RL) due to their expressiveness in modeling complex transition dynamics. On the other hand, it remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of RL. In this paper, we provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle in the face of uncertainty for exploration. In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models. Theoretically, we establish the sample complexity of the proposed approach in the online and offline settings. Empirically, we demonstrate superior performance over current state-of-the-art algorithms across various benchmarks.
translated by 谷歌翻译
代表学习呈现在深入学习的经验成功的核心,以处理维度的诅咒。然而,由于i),表现力(RL)的钢筋学习(RL)尚未充分利用卓越的能力,表现力和易疏忽之间的权衡;二世),探索与代表学习之间的耦合。在本文中,我们首先揭示了在随机控制模型中的一些噪声假设下,我们可以免费获得其相应的马尔可夫过渡操作员的线性谱特征。基于该观察,我们提出了嵌入(Spede)的谱动力学嵌入(SPEDE),这将通过利用噪声结构来完成对代表学习的乐观探索。我们提供对Speded的严格理论分析,并展示了几种基准上现有最先进的实证算法的实际卓越性能。
translated by 谷歌翻译
表示学习通常通过管理维度的诅咒在加强学习中起关键作用。代表性的算法类别利用了随机过渡动力学的光谱分解,以构建在理想化环境中具有强大理论特性的表示。但是,当前的光谱方法的适用性有限,因为它们是用于仅国家的聚合并源自策略依赖性过渡内核的,而无需考虑勘探问题。为了解决这些问题,我们提出了一种替代光谱方法,光谱分解表示(SPEDER),该方法从动力学中提取了国家行动抽象而不诱导虚假依赖数据收集策略,同时还可以平衡探索访问权分析交易 - 在学习过程中关闭。理论分析确定了在线和离线设置中所提出的算法的样本效率。此外,一项实验研究表明,在几个基准测试中,比当前的最新算法表现出色。
translated by 谷歌翻译
通常通过利用低级别表示来解决马尔可夫决策过程(MDP)中维度的诅咒。这激发了有关线性MDP的最新理论研究。但是,大多数方法在不切实际的假设下对分解的归一化或在实践中引入未解决的计算挑战。相反,我们考虑了线性MDP的替代定义,该定义自动确保正常化,同时允许通过对比度估计进行有效的表示。该框架还承认了置信度调整的索引算法,从而使面对不确定性的乐观或悲观主义,使得有效而有原则的方法。据我们所知,这为线性MDP提供了第一种实用的表示学习方法,该方法既可以实现强大的理论保证和经验绩效。从理论上讲,我们证明所提出的算法在在线和离线设置中均有效。从经验上讲,我们在几个基准测试中表现出优于现有基于模型的现有模型和无模型算法的卓越性能。
translated by 谷歌翻译
这项工作研究了RL中的代表性学习问题:我们如何学习紧凑的低维表示,使得在代表之上,我们可以以示例有效的方式执行诸如勘探和开发的RL程序。我们专注于低级马尔可夫决策过程(MDP),其中转换动态对应于低秩转换矩阵。与假设表示的事先作品(例如,线性MDP)不同,这里我们需要学习低秩MDP的表示。我们研究在线RL和离线RL设置。对于在线设置,在Flambe(Agarwal et.al)中使用相同的计算oracells操作,用于在低级MDP中学习表示的最先进的算法,我们提出了一种算法Rep-UCB上部置信束缚的驱动表示学习对于RL),这显着提高了$ \ widetilde {o}的样本复杂性(a ^ 9 d ^ 7 /(\ epsilon ^ {10}(1- \ gamma)^ {22}),因为flambe到$ \ widetilde {o}(a ^ 4 d ^ 4 /(\ epsilon ^ 2(1- \ gamma)^ {3})$ d $是转换矩阵的等级(或地面真相表示的维度) ,$ a $是行动次数,而$ \ gamma $是折扣因素。值得注意的是,rep-ucb比flambe更简单,因为它直接余额余额表示学习,探索和剥削之间的相互作用,而Flambe是一种探索的探索式风格方法,并且必须逐步执行无奖励探索及时。对于离线RL设置,我们开发了一种利用悲观主义在部分覆盖条件下学习的算法:我们的算法能够与脱机分布所涵盖的策略进行竞争。
translated by 谷歌翻译
我们认为在情节环境中的强化学习(RL)中的遗憾最小化问题。在许多实际的RL环境中,状态和动作空间是连续的或非常大的。现有方法通过随机过渡模型的低维表示或$ q $ functions的近似值来确定遗憾的保证。但是,对国家价值函数的函数近似方案的理解基本上仍然缺失。在本文中,我们提出了一种基于在线模型的RL算法,即CME-RL,该算法将过渡分布的表示形式学习为嵌入在复制的内核希尔伯特领域中的嵌入,同时仔细平衡了利用探索 - 探索权衡取舍。我们通过证明频繁的(最糟糕的)遗憾结束了$ \ tilde {o} \ big(h \ gamma_n \ sqrt {n} \ big)$ \ footnote {$ footnote {$ tilde {$ o}(\ cdot)$仅隐藏绝对常数和poly-logarithmic因素。},其中$ h $是情节长度,$ n $是时间步长的总数,$ \ gamma_n $是信息理论数量国家行动特征空间的有效维度。我们的方法绕过了估计过渡概率的需求,并适用于可以定义内核的任何域。它还为内核方法的一般理论带来了新的见解,以进行近似推断和RL遗憾的最小化。
translated by 谷歌翻译
鉴于它在提取功能表示方面的力量,对比性的自我监督学习已成功整合到(深)强化学习(RL)的实践中,从而在各种应用程序中提供了有效的政策学习。尽管取得了巨大的经验成功,但对RL的对比学习的理解仍然难以捉摸。为了缩小这样的差距,我们研究了Markov决策过程(MDP)和Markov Games(MGS)的对比度学习如何赋予RL的能力。对于这两种模型,我们建议通过最大程度地减少对比度损失来提取低级别模型的正确特征表示。此外,在在线环境下,我们提出了新颖的上限置信界(UCB)型算法,该算法将这种对比度损失与MDP或MGS的在线RL算法结合在一起。从理论上讲,我们进一步证明了我们的算法恢复了真实表示形式,并同时在学习MDP和MGS中学习最佳策略和NASH平衡方面同时实现了样本效率。我们还提供实证研究,以证明基于UCB的RL的对比度学习方法的功效。据我们所知,我们提供了第一种可证明有效的在线RL算法,该算法结合了代表学习的对比学习。我们的代码可从https://github.com/baichenjia/contrastive-ucb获得。
translated by 谷歌翻译
随着代表性学习成为一种在实践中降低增强学习(RL)样本复杂性(RL)的强大技术,对其优势的理论理解仍然是有限的。在本文中,我们从理论上表征了在低级马尔可夫决策过程(MDP)模型下表示学习的好处。我们首先研究多任务低级RL(作为上游培训),所有任务都共享一个共同的表示,并提出了一种称为加油的新型多任务奖励算法。加油站同时了解每个任务的过渡内核和近乎最佳的策略,并为下游任务输出良好的代表。我们的结果表明,只要任务总数高于一定的阈值,多任务表示学习比单独学习的样本效率要高。然后,我们研究在线和离线设置中的下游RL,在该设置中,代理商分配了一个新任务,共享与上游任务相同的表示形式。对于在线和离线设置,我们都会开发出样本效率高的算法,并表明它找到了一个近乎最佳的策略,其次要差距在上游中学习的估计误差和一个消失的术语作为数字作为数字的估计误差的范围。下游样品的大量变大。我们在线和离线RL的下游结果进一步捕获了从上游采用学习的表示形式的好处,而不是直接学习低级模型的表示。据我们所知,这是第一个理论研究,它表征了代表性学习在基于探索的无奖励多任务RL中对上游和下游任务的好处。
translated by 谷歌翻译
我们研究了离线加强学习(RL)的代表性学习,重点是离线政策评估(OPE)的重要任务。最近的工作表明,与监督的学习相反,Q功能的可实现性不足以学习。样品效率OPE的两个足够条件是Bellman的完整性和覆盖范围。先前的工作通常假设给出满足这些条件的表示形式,结果大多是理论上的。在这项工作中,我们提出了BCRL,该BCRL直接从数据中吸取了近似线性的贝尔曼完整表示,并具有良好的覆盖范围。通过这种学识渊博的表示,我们使用最小平方策略评估(LSPE)执行OPE,并在我们学习的表示中具有线性函数。我们提出了端到端的理论分析,表明我们的两阶段算法享有多项式样本复杂性,该算法在所考虑的丰富类别中提供了一些表示形式,这是线性的贝尔曼完成。从经验上讲,我们广泛评估了我们的DeepMind Control Suite的具有挑战性的基于图像的连续控制任务。我们显示我们的表示能够与针对非政策RL开发的先前表示的学习方法(例如Curl,SPR)相比,可以更好地使用OPE。 BCRL使用最先进的方法拟合Q评估(FQE)实现竞争性OPE误差,并在评估超出初始状态分布的评估时击败FQE。我们的消融表明,我们方法的线性铃铛完整和覆盖范围都至关重要。
translated by 谷歌翻译
We study sample efficient reinforcement learning (RL) under the general framework of interactive decision making, which includes Markov decision process (MDP), partially observable Markov decision process (POMDP), and predictive state representation (PSR) as special cases. Toward finding the minimum assumption that empowers sample efficient learning, we propose a novel complexity measure, generalized eluder coefficient (GEC), which characterizes the fundamental tradeoff between exploration and exploitation in online interactive decision making. In specific, GEC captures the hardness of exploration by comparing the error of predicting the performance of the updated policy with the in-sample training error evaluated on the historical data. We show that RL problems with low GEC form a remarkably rich class, which subsumes low Bellman eluder dimension problems, bilinear class, low witness rank problems, PO-bilinear class, and generalized regular PSR, where generalized regular PSR, a new tractable PSR class identified by us, includes nearly all known tractable POMDPs. Furthermore, in terms of algorithm design, we propose a generic posterior sampling algorithm, which can be implemented in both model-free and model-based fashion, under both fully observable and partially observable settings. The proposed algorithm modifies the standard posterior sampling algorithm in two aspects: (i) we use an optimistic prior distribution that biases towards hypotheses with higher values and (ii) a loglikelihood function is set to be the empirical loss evaluated on the historical data, where the choice of loss function supports both model-free and model-based learning. We prove that the proposed algorithm is sample efficient by establishing a sublinear regret upper bound in terms of GEC. In summary, we provide a new and unified understanding of both fully observable and partially observable RL.
translated by 谷歌翻译
本文介绍了一种简单的有效学习算法,用于一般顺序决策。该算法将探索的乐观与模型估计的最大似然估计相结合,因此被命名为OMLE。我们证明,Omle了解了多项式数量的样本中一系列非常丰富的顺序决策问题的近乎最佳策略。这个丰富的类别不仅包括大多数已知的基于模型的基于模型的强化学习(RL)问题(例如表格MDP,计算的MDP,低证人等级问题,表格弱弱/可观察到的POMDP和多步可解码的POMDP),但是同样,许多新的具有挑战性的RL问题,尤其是在可观察到的部分环境中,这些问题以前尚不清楚。值得注意的是,本文解决的新问题包括(1)具有连续观察和功能近似的可观察到的POMDP,在其中我们实现了完全独立于观察空间的第一个样品复杂性; (2)条件良好的低级顺序决策问题(也称为预测状态表示(PSRS)),其中包括并概括了所有已知的可牵引的POMDP示例,这些示例在更固有的表示下; (3)在帆条件下进行一般顺序决策问题,这统一了我们在完全可观察和部分可观察的设置中对基于模型的RL的现有理解。帆条件是由本文确定的,可以将其视为贝尔曼/证人等级的自然概括,以解决部分可观察性。
translated by 谷歌翻译
在阻碍强化学习(RL)到现实世界中的问题的原因之一,两个因素至关重要:与培训相比,数据有限和测试环境的不匹配。在本文中,我们试图通过分配强大的离线RL的问题同时解决这些问题。特别是,我们学习了一个从源环境中获得的历史数据,并优化了RL代理,并在扰动的环境中表现良好。此外,我们考虑将算法应用于大规模问题的线性函数近似。我们证明我们的算法可以实现$ O(1/\ sqrt {k})$的次级临时性,具体取决于线性函数尺寸$ d $,这似乎是在此设置中使用样品复杂性保证的第一个结果。进行了不同的实验以证明我们的理论发现,显示了我们算法与非持bust算法的优越性。
translated by 谷歌翻译
离线增强学习(RL)可以从先前收集的数据中进行有效的学习,而无需探索,这在探索昂贵甚至不可行时在现实世界应用中显示出巨大的希望。折扣因子$ \ gamma $在提高在线RL样本效率和估计准确性方面起着至关重要的作用,但是折现因子在离线RL中的作用尚未得到很好的探索。本文研究了$ \ gamma $在离线RL中的两个明显影响,并通过理论分析,即正则化效果和悲观效应。一方面,$ \ gamma $是在现有离线技术下以样本效率而定的最佳选择的监管机构。另一方面,较低的指导$ \ gamma $也可以看作是一种悲观的方式,我们在最坏的模型中优化了政策的性能。我们通过表格MDP和标准D4RL任务从经验上验证上述理论观察。结果表明,折现因子在离线RL算法的性能中起着至关重要的作用,无论是在现有的离线方法的小型数据制度下还是在没有其他保守主义的大型数据制度中。
translated by 谷歌翻译
我们提出了一种乐观的基于模型的算法,Dubbed SMRL,用于通过指数族分布指定的转换模型,以D $参数指定,奖励是有界和已知的。SMRL使用得分匹配,一种无通量的密度估计技术,可以通过RIDGE回归有效地估计模型参数。在标准规律性假设下,SMRL实现$ \ tilde o(d \ sqrt {h ^ 3t})$在线遗憾,其中$ h $是每一集的长度,$ t $是互动的总数(忽略多项式依赖结构尺度参数)。
translated by 谷歌翻译
深度加强学习(RL)由Q函数的神经网络近似,具有巨大的经验成功。虽然RL的理论传统上专注于线性函数近似(或雕刻尺寸)方法,但是关于非线性RL的近似已知Q功能的神经网络近似。这是这项工作的重点,在那里我们研究了与双层神经网络的函数逼近(考虑到Relu和多项式激活功能)。我们的第一个结果是在两层神经网络的完整性下的生成模型设置中的计算上和统计学高效的算法。我们的第二个结果考虑了这个设置,而是通过神经网络函数类的可实现性。这里,假设确定性动态,样本复杂度在代数维度中线性缩放。在所有情况下,我们的结果显着改善了线性(或雕刻尺寸)方法可以获得的。
translated by 谷歌翻译
尽管无奖励强化学习勘探阶段的主要目标(RF-RL)是减少具有最小轨迹数量的估计模型中的不确定性时间。目前尚不清楚这种安全的探索要求如何影响相应的样本复杂性,以实现所获得的计划中所需的最佳性。在这项工作中,我们首次尝试回答这个问题。特别是,我们考虑了事先知道安全基线政策的情况,并提出了一个统一的安全奖励探索(甜蜜)框架。然后,我们将甜蜜框架专门为表格和低级MDP设置,并分别开发出算法所构成的表格甜味和低级别甜味。两种算法都利用了新引入的截短值函数的凹度和连续性,并保证在探索过程中以高概率侵犯了零约束。此外,两种算法都可以在计划阶段的任何约束中找到近乎最佳的政策。值得注意的是,算法下的样本复杂性在无限制的对应物中匹配甚至超过最恒定因素的最新情况,这证明安全约束几乎不会增加RF-RL的样本复杂性。
translated by 谷歌翻译
我们研究了具有无限观察和状态空间的部分观察到的马尔可夫决策过程(POMDP)的强化学习,理论上仍然不太研究。为此,我们首次尝试弥合具有线性结构的一类POMDP的部分可观察性和功能近似。详细说明,我们建议在$ O(1/\ Epsilon^2)$情节中获得$ \ epsilon $ - 最佳策略的增强学习算法(通过对抗积分方程或操作装置的乐观探索)。特别是,样品复杂性在线性结构的固有维度上缩放,并且独立于观测和状态空间的大小。 Op-Tenet的样品效率由一系列成分启用:(i)具有有限内存的钟形操作员,该操作员以递归方式表示值函数,(ii)通过对抗性积分对此类操作员的识别和估计方程式具有针对线性结构量身定制的平滑歧视器,以及(iii)通过乐观探索观察和状态空间,该探索基于量化对抗性积分方程的不确定性。
translated by 谷歌翻译
我们考虑在具有非线性函数近似的两名玩家零和马尔可夫游戏中学习NASH平衡,其中动作值函数通过繁殖内核Hilbert Space(RKHS)中的函数近似。关键挑战是如何在高维函数空间中进行探索。我们提出了一种新颖的在线学习算法,以最大程度地减少双重性差距来找到NASH平衡。我们算法的核心是基于不确定性的乐观原理得出的上和下置信度界限。我们证明,在非常温和的假设上,我们的算法能够获得$ O(\ sqrt {t})$遗憾,并在对奖励功能和马尔可夫游戏的基本动态下进行多项式计算复杂性。我们还提出了我们的算法的几个扩展,包括具有伯恩斯坦型奖励的算法,可以实现更严格的遗憾,以及用于模型错误指定的另一种算法,可以应用于神经功能近似。
translated by 谷歌翻译
低级MDP已成为研究强化学习中的表示和探索的重要模型。有了已知的代表,存在几种无模型的探索策略。相反,未知表示设置的所有算法都是基于模型的,因此需要对完整动力学进行建模。在这项工作中,我们介绍了低级MDP的第一个无模型表示学习算法。关键的算法贡献是一个新的Minimax表示学习目标,我们为其提供具有不同权衡的变体,其统计和计算属性不同。我们将这一表示的学习步骤与探索策略交织在一起,以无奖励的方式覆盖状态空间。所得算法可证明样品有效,并且可以适应一般函数近似以扩展到复杂的环境。
translated by 谷歌翻译
We study time-inhomogeneous episodic reinforcement learning (RL) under general function approximation and sparse rewards. We design a new algorithm, Variance-weighted Optimistic $Q$-Learning (VO$Q$L), based on $Q$-learning and bound its regret assuming completeness and bounded Eluder dimension for the regression function class. As a special case, VO$Q$L achieves $\tilde{O}(d\sqrt{HT}+d^6H^{5})$ regret over $T$ episodes for a horizon $H$ MDP under ($d$-dimensional) linear function approximation, which is asymptotically optimal. Our algorithm incorporates weighted regression-based upper and lower bounds on the optimal value function to obtain this improved regret. The algorithm is computationally efficient given a regression oracle over the function class, making this the first computationally tractable and statistically optimal approach for linear MDPs.
translated by 谷歌翻译