通常通过利用低级别表示来解决马尔可夫决策过程(MDP)中维度的诅咒。这激发了有关线性MDP的最新理论研究。但是,大多数方法在不切实际的假设下对分解的归一化或在实践中引入未解决的计算挑战。相反,我们考虑了线性MDP的替代定义,该定义自动确保正常化,同时允许通过对比度估计进行有效的表示。该框架还承认了置信度调整的索引算法,从而使面对不确定性的乐观或悲观主义,使得有效而有原则的方法。据我们所知,这为线性MDP提供了第一种实用的表示学习方法,该方法既可以实现强大的理论保证和经验绩效。从理论上讲,我们证明所提出的算法在在线和离线设置中均有效。从经验上讲,我们在几个基准测试中表现出优于现有基于模型的现有模型和无模型算法的卓越性能。
translated by 谷歌翻译
表示学习通常通过管理维度的诅咒在加强学习中起关键作用。代表性的算法类别利用了随机过渡动力学的光谱分解,以构建在理想化环境中具有强大理论特性的表示。但是,当前的光谱方法的适用性有限,因为它们是用于仅国家的聚合并源自策略依赖性过渡内核的,而无需考虑勘探问题。为了解决这些问题,我们提出了一种替代光谱方法,光谱分解表示(SPEDER),该方法从动力学中提取了国家行动抽象而不诱导虚假依赖数据收集策略,同时还可以平衡探索访问权分析交易 - 在学习过程中关闭。理论分析确定了在线和离线设置中所提出的算法的样本效率。此外,一项实验研究表明,在几个基准测试中,比当前的最新算法表现出色。
translated by 谷歌翻译
代表学习呈现在深入学习的经验成功的核心,以处理维度的诅咒。然而,由于i),表现力(RL)的钢筋学习(RL)尚未充分利用卓越的能力,表现力和易疏忽之间的权衡;二世),探索与代表学习之间的耦合。在本文中,我们首先揭示了在随机控制模型中的一些噪声假设下,我们可以免费获得其相应的马尔可夫过渡操作员的线性谱特征。基于该观察,我们提出了嵌入(Spede)的谱动力学嵌入(SPEDE),这将通过利用噪声结构来完成对代表学习的乐观探索。我们提供对Speded的严格理论分析,并展示了几种基准上现有最先进的实证算法的实际卓越性能。
translated by 谷歌翻译
Deep latent variable models have achieved significant empirical successes in model-based reinforcement learning (RL) due to their expressiveness in modeling complex transition dynamics. On the other hand, it remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of RL. In this paper, we provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle in the face of uncertainty for exploration. In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models. Theoretically, we establish the sample complexity of the proposed approach in the online and offline settings. Empirically, we demonstrate superior performance over current state-of-the-art algorithms across various benchmarks.
translated by 谷歌翻译
这项工作研究了RL中的代表性学习问题:我们如何学习紧凑的低维表示,使得在代表之上,我们可以以示例有效的方式执行诸如勘探和开发的RL程序。我们专注于低级马尔可夫决策过程(MDP),其中转换动态对应于低秩转换矩阵。与假设表示的事先作品(例如,线性MDP)不同,这里我们需要学习低秩MDP的表示。我们研究在线RL和离线RL设置。对于在线设置,在Flambe(Agarwal et.al)中使用相同的计算oracells操作,用于在低级MDP中学习表示的最先进的算法,我们提出了一种算法Rep-UCB上部置信束缚的驱动表示学习对于RL),这显着提高了$ \ widetilde {o}的样本复杂性(a ^ 9 d ^ 7 /(\ epsilon ^ {10}(1- \ gamma)^ {22}),因为flambe到$ \ widetilde {o}(a ^ 4 d ^ 4 /(\ epsilon ^ 2(1- \ gamma)^ {3})$ d $是转换矩阵的等级(或地面真相表示的维度) ,$ a $是行动次数,而$ \ gamma $是折扣因素。值得注意的是,rep-ucb比flambe更简单,因为它直接余额余额表示学习,探索和剥削之间的相互作用,而Flambe是一种探索的探索式风格方法,并且必须逐步执行无奖励探索及时。对于离线RL设置,我们开发了一种利用悲观主义在部分覆盖条件下学习的算法:我们的算法能够与脱机分布所涵盖的策略进行竞争。
translated by 谷歌翻译
随着代表性学习成为一种在实践中降低增强学习(RL)样本复杂性(RL)的强大技术,对其优势的理论理解仍然是有限的。在本文中,我们从理论上表征了在低级马尔可夫决策过程(MDP)模型下表示学习的好处。我们首先研究多任务低级RL(作为上游培训),所有任务都共享一个共同的表示,并提出了一种称为加油的新型多任务奖励算法。加油站同时了解每个任务的过渡内核和近乎最佳的策略,并为下游任务输出良好的代表。我们的结果表明,只要任务总数高于一定的阈值,多任务表示学习比单独学习的样本效率要高。然后,我们研究在线和离线设置中的下游RL,在该设置中,代理商分配了一个新任务,共享与上游任务相同的表示形式。对于在线和离线设置,我们都会开发出样本效率高的算法,并表明它找到了一个近乎最佳的策略,其次要差距在上游中学习的估计误差和一个消失的术语作为数字作为数字的估计误差的范围。下游样品的大量变大。我们在线和离线RL的下游结果进一步捕获了从上游采用学习的表示形式的好处,而不是直接学习低级模型的表示。据我们所知,这是第一个理论研究,它表征了代表性学习在基于探索的无奖励多任务RL中对上游和下游任务的好处。
translated by 谷歌翻译
我们提出了一种乐观的基于模型的算法,Dubbed SMRL,用于通过指数族分布指定的转换模型,以D $参数指定,奖励是有界和已知的。SMRL使用得分匹配,一种无通量的密度估计技术,可以通过RIDGE回归有效地估计模型参数。在标准规律性假设下,SMRL实现$ \ tilde o(d \ sqrt {h ^ 3t})$在线遗憾,其中$ h $是每一集的长度,$ t $是互动的总数(忽略多项式依赖结构尺度参数)。
translated by 谷歌翻译
我们研究了离线加强学习(RL)的代表性学习,重点是离线政策评估(OPE)的重要任务。最近的工作表明,与监督的学习相反,Q功能的可实现性不足以学习。样品效率OPE的两个足够条件是Bellman的完整性和覆盖范围。先前的工作通常假设给出满足这些条件的表示形式,结果大多是理论上的。在这项工作中,我们提出了BCRL,该BCRL直接从数据中吸取了近似线性的贝尔曼完整表示,并具有良好的覆盖范围。通过这种学识渊博的表示,我们使用最小平方策略评估(LSPE)执行OPE,并在我们学习的表示中具有线性函数。我们提出了端到端的理论分析,表明我们的两阶段算法享有多项式样本复杂性,该算法在所考虑的丰富类别中提供了一些表示形式,这是线性的贝尔曼完成。从经验上讲,我们广泛评估了我们的DeepMind Control Suite的具有挑战性的基于图像的连续控制任务。我们显示我们的表示能够与针对非政策RL开发的先前表示的学习方法(例如Curl,SPR)相比,可以更好地使用OPE。 BCRL使用最先进的方法拟合Q评估(FQE)实现竞争性OPE误差,并在评估超出初始状态分布的评估时击败FQE。我们的消融表明,我们方法的线性铃铛完整和覆盖范围都至关重要。
translated by 谷歌翻译
鉴于它在提取功能表示方面的力量,对比性的自我监督学习已成功整合到(深)强化学习(RL)的实践中,从而在各种应用程序中提供了有效的政策学习。尽管取得了巨大的经验成功,但对RL的对比学习的理解仍然难以捉摸。为了缩小这样的差距,我们研究了Markov决策过程(MDP)和Markov Games(MGS)的对比度学习如何赋予RL的能力。对于这两种模型,我们建议通过最大程度地减少对比度损失来提取低级别模型的正确特征表示。此外,在在线环境下,我们提出了新颖的上限置信界(UCB)型算法,该算法将这种对比度损失与MDP或MGS的在线RL算法结合在一起。从理论上讲,我们进一步证明了我们的算法恢复了真实表示形式,并同时在学习MDP和MGS中学习最佳策略和NASH平衡方面同时实现了样本效率。我们还提供实证研究,以证明基于UCB的RL的对比度学习方法的功效。据我们所知,我们提供了第一种可证明有效的在线RL算法,该算法结合了代表学习的对比学习。我们的代码可从https://github.com/baichenjia/contrastive-ucb获得。
translated by 谷歌翻译
低级MDP已成为研究强化学习中的表示和探索的重要模型。有了已知的代表,存在几种无模型的探索策略。相反,未知表示设置的所有算法都是基于模型的,因此需要对完整动力学进行建模。在这项工作中,我们介绍了低级MDP的第一个无模型表示学习算法。关键的算法贡献是一个新的Minimax表示学习目标,我们为其提供具有不同权衡的变体,其统计和计算属性不同。我们将这一表示的学习步骤与探索策略交织在一起,以无奖励的方式覆盖状态空间。所得算法可证明样品有效,并且可以适应一般函数近似以扩展到复杂的环境。
translated by 谷歌翻译
离线增强学习(RL)可以从先前收集的数据中进行有效的学习,而无需探索,这在探索昂贵甚至不可行时在现实世界应用中显示出巨大的希望。折扣因子$ \ gamma $在提高在线RL样本效率和估计准确性方面起着至关重要的作用,但是折现因子在离线RL中的作用尚未得到很好的探索。本文研究了$ \ gamma $在离线RL中的两个明显影响,并通过理论分析,即正则化效果和悲观效应。一方面,$ \ gamma $是在现有离线技术下以样本效率而定的最佳选择的监管机构。另一方面,较低的指导$ \ gamma $也可以看作是一种悲观的方式,我们在最坏的模型中优化了政策的性能。我们通过表格MDP和标准D4RL任务从经验上验证上述理论观察。结果表明,折现因子在离线RL算法的性能中起着至关重要的作用,无论是在现有的离线方法的小型数据制度下还是在没有其他保守主义的大型数据制度中。
translated by 谷歌翻译
本文介绍了一种简单的有效学习算法,用于一般顺序决策。该算法将探索的乐观与模型估计的最大似然估计相结合,因此被命名为OMLE。我们证明,Omle了解了多项式数量的样本中一系列非常丰富的顺序决策问题的近乎最佳策略。这个丰富的类别不仅包括大多数已知的基于模型的基于模型的强化学习(RL)问题(例如表格MDP,计算的MDP,低证人等级问题,表格弱弱/可观察到的POMDP和多步可解码的POMDP),但是同样,许多新的具有挑战性的RL问题,尤其是在可观察到的部分环境中,这些问题以前尚不清楚。值得注意的是,本文解决的新问题包括(1)具有连续观察和功能近似的可观察到的POMDP,在其中我们实现了完全独立于观察空间的第一个样品复杂性; (2)条件良好的低级顺序决策问题(也称为预测状态表示(PSRS)),其中包括并概括了所有已知的可牵引的POMDP示例,这些示例在更固有的表示下; (3)在帆条件下进行一般顺序决策问题,这统一了我们在完全可观察和部分可观察的设置中对基于模型的RL的现有理解。帆条件是由本文确定的,可以将其视为贝尔曼/证人等级的自然概括,以解决部分可观察性。
translated by 谷歌翻译
Offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data. This problem setting offers the promise of utilizing such datasets to acquire policies without any costly or dangerous active exploration. However, it is also challenging, due to the distributional shift between the offline training data and those states visited by the learned policy. Despite significant recent progress, the most successful prior methods are model-free and constrain the policy to the support of data, precluding generalization to unseen states. In this paper, we first observe that an existing model-based RL algorithm already produces significant gains in the offline setting compared to model-free approaches. However, standard model-based RL methods, designed for the online setting, do not provide an explicit mechanism to avoid the offline setting's distributional shift issue. Instead, we propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics. We theoretically show that the algorithm maximizes a lower bound of the policy's return under the true MDP. We also characterize the trade-off between the gain and risk of leaving the support of the batch data. Our algorithm, Model-based Offline Policy Optimization (MOPO), outperforms standard model-based RL algorithms and prior state-of-the-art model-free offline RL algorithms on existing offline RL benchmarks and two challenging continuous control tasks that require generalizing from data collected for a different task. * equal contribution. † equal advising. Orders randomized.34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
Effectively leveraging large, previously collected datasets in reinforcement learning (RL) is a key challenge for large-scale real-world applications. Offline RL algorithms promise to learn effective policies from previously-collected, static datasets without further interaction. However, in practice, offline RL presents a major challenge, and standard off-policy RL methods can fail due to overestimation of values induced by the distributional shift between the dataset and the learned policy, especially when training on complex and multi-modal data distributions. In this paper, we propose conservative Q-learning (CQL), which aims to address these limitations by learning a conservative Q-function such that the expected value of a policy under this Q-function lower-bounds its true value. We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees. In practice, CQL augments the standard Bellman error objective with a simple Q-value regularizer which is straightforward to implement on top of existing deep Q-learning and actor-critic implementations. On both discrete and continuous control domains, we show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return, especially when learning from complex and multi-modal data distributions.Preprint. Under review.
translated by 谷歌翻译
We study sample efficient reinforcement learning (RL) under the general framework of interactive decision making, which includes Markov decision process (MDP), partially observable Markov decision process (POMDP), and predictive state representation (PSR) as special cases. Toward finding the minimum assumption that empowers sample efficient learning, we propose a novel complexity measure, generalized eluder coefficient (GEC), which characterizes the fundamental tradeoff between exploration and exploitation in online interactive decision making. In specific, GEC captures the hardness of exploration by comparing the error of predicting the performance of the updated policy with the in-sample training error evaluated on the historical data. We show that RL problems with low GEC form a remarkably rich class, which subsumes low Bellman eluder dimension problems, bilinear class, low witness rank problems, PO-bilinear class, and generalized regular PSR, where generalized regular PSR, a new tractable PSR class identified by us, includes nearly all known tractable POMDPs. Furthermore, in terms of algorithm design, we propose a generic posterior sampling algorithm, which can be implemented in both model-free and model-based fashion, under both fully observable and partially observable settings. The proposed algorithm modifies the standard posterior sampling algorithm in two aspects: (i) we use an optimistic prior distribution that biases towards hypotheses with higher values and (ii) a loglikelihood function is set to be the empirical loss evaluated on the historical data, where the choice of loss function supports both model-free and model-based learning. We prove that the proposed algorithm is sample efficient by establishing a sublinear regret upper bound in terms of GEC. In summary, we provide a new and unified understanding of both fully observable and partially observable RL.
translated by 谷歌翻译
尽管无奖励强化学习勘探阶段的主要目标(RF-RL)是减少具有最小轨迹数量的估计模型中的不确定性时间。目前尚不清楚这种安全的探索要求如何影响相应的样本复杂性,以实现所获得的计划中所需的最佳性。在这项工作中,我们首次尝试回答这个问题。特别是,我们考虑了事先知道安全基线政策的情况,并提出了一个统一的安全奖励探索(甜蜜)框架。然后,我们将甜蜜框架专门为表格和低级MDP设置,并分别开发出算法所构成的表格甜味和低级别甜味。两种算法都利用了新引入的截短值函数的凹度和连续性,并保证在探索过程中以高概率侵犯了零约束。此外,两种算法都可以在计划阶段的任何约束中找到近乎最佳的政策。值得注意的是,算法下的样本复杂性在无限制的对应物中匹配甚至超过最恒定因素的最新情况,这证明安全约束几乎不会增加RF-RL的样本复杂性。
translated by 谷歌翻译
依赖于太多的实验来学习良好的行动,目前的强化学习(RL)算法在现实世界的环境中具有有限的适用性,这可能太昂贵,无法探索探索。我们提出了一种批量RL算法,其中仅使用固定的脱机数据集来学习有效策略,而不是与环境的在线交互。批量RL中的有限数据产生了在培训数据中不充分表示的状态/行动的价值估计中的固有不确定性。当我们的候选政策从生成数据的候选政策发散时,这导致特别严重的外推。我们建议通过两个直接的惩罚来减轻这个问题:减少这种分歧的政策限制和减少过于乐观估计的价值约束。在全面的32个连续动作批量RL基准测试中,我们的方法对最先进的方法进行了比较,无论如何收集离线数据如何。
translated by 谷歌翻译
我们提出了一个通用框架,以设计基于模型的RL的后验采样方法。我们表明,可以通过减少基于Hellinger距离的条件概率估计的遗憾来分析所提出的算法。我们进一步表明,当我们通过数据可能性测量模型误差时,乐观的后采样可以控制此Hellinger距离。该技术使我们能够设计和分析许多基于模型的RL设置的最先进的样品复杂性保证的统一后采样算法。我们在许多特殊情况下说明了我们的总体结果,证明了我们框架的多功能性。
translated by 谷歌翻译
脱机强化学习 - 从一批数据中学习策略 - 是难以努力的:如果没有制造强烈的假设,它很容易构建实体算法失败的校长。在这项工作中,我们考虑了某些现实世界问题的财产,其中离线强化学习应该有效:行动仅对一部分产生有限的行动。我们正规化并介绍此动作影响规律(AIR)财产。我们进一步提出了一种算法,该算法假定和利用AIR属性,并在MDP满足空气时绑定输出策略的子优相。最后,我们展示了我们的算法在定期保留的两个模拟环境中跨越不同的数据收集策略占据了现有的离线强度学习算法。
translated by 谷歌翻译
我们在一般的非线性函数近似下研究无奖励增强学习(RL),并在各种标准结构假设下建立样品效率和硬度结果。从积极的一面来看,我们提出了在最小的结构假设下进行样品有效奖励探索的Rfolive(无奖励橄榄)算法,该假设涵盖了先前研究的线性MDPS的设置(Jin等,2020b),线性完整性(线性完整性)( Zanette等人,2020b)和低级MDP,具有未知的表示(Modi等,2021)。我们的分析表明,以前针对后两个设置的易学性或可及性假设在统计上对于无奖励探索而言并不是必需的。在负面方面,我们为在线性完整性假设下的无奖励和奖励意识探索提供统计硬度结果时,当基础特征未知时,显示了低级别和线性完整性设置之间的指数分离。
translated by 谷歌翻译