Lane detection is a long-standing task and a basic module in autonomous driving. The task is to detect the lane of the current driving road, and provide relevant information such as the ID, direction, curvature, width, length, with visualization. Our work is based on CNN backbone DLA-34, along with Affinity Fields, aims to achieve robust detection of various lanes without assuming the number of lanes. Besides, we investigate novel decoding methods to achieve more efficient lane detection algorithm.
translated by 谷歌翻译
车道检测是许多实际自治系统的重要组成部分。尽管已经提出了各种各样的车道检测方法,但随着时间的推移报告了基准的稳定改善,但车道检测仍然是一个未解决的问题。这是因为大多数现有的车道检测方法要么将车道检测视为密集的预测或检测任务,因此很少有人考虑泳道标记的独特拓扑(Y形,叉形,几乎是水平的车道),该拓扑标记物是该标记的。导致亚最佳溶液。在本文中,我们提出了一种基于继电器链预测的新方法检测。具体而言,我们的模型预测了分割图以对前景和背景区域进行分类。对于前景区域中的每个像素点,我们穿过前向分支和后向分支以恢复整个车道。每个分支都会解码传输图和距离图,以产生移动到下一个点的方向,以及逐步预测继电器站的步骤(下一个点)。因此,我们的模型能够沿车道捕获关键点。尽管它很简单,但我们的策略使我们能够在包括Tusimple,Culane,Curvelanes和Llamas在内的四个主要基准上建立新的最先进。
translated by 谷歌翻译
现代方法主要将车道检测视为像素细分的问题,该问题正在努力解决效率问题和诸如严重闭塞和极端照明条件之类的挑战性情况。受到人类感知的启发,在严重的阻塞和极端照明条件下对车道的认识主要基于上下文和全球信息。在这一观察结果的推动下,我们提出了一种针对超快速速度的新颖,简单而有效的配方,以及具有挑战性的场景问题。具体而言,我们将车道检测过程视为使用全局特征的锚定序列分类问题。首先,我们在一系列混合(行和列)锚点上代表具有稀疏坐标的车道。借助锚驱动的代表,我们随后将车道检测任务重新制定为序数分类问题,以获取车道的坐标。我们的方法可以通过锚驱动的表示可以大大降低计算成本。使用顺序分类公式的大型接受场特性,我们还可以处理具有挑战性的情况。在四个车道检测数据集上进行的广泛实验表明,我们的方法可以在速度和准确性方面达到最先进的性能。轻量级版本甚至可以每秒达到300帧(FPS)。我们的代码在https://github.com/cfzd/ultra-fast-lane-detection-v2上。
translated by 谷歌翻译
现代车辆配备各种驾驶员辅助系统,包括自动车道保持,这防止了无意的车道偏离。传统车道检测方法采用了手工制作或基于深度的学习功能,然后使用基于帧的RGB摄像机进行通道提取的后处理技术。用于车道检测任务的帧的RGB摄像机的利用易于照明变化,太阳眩光和运动模糊,这限制了车道检测方法的性能。在自主驾驶中的感知堆栈中结合了一个事件摄像机,用于自动驾驶的感知堆栈是用于减轻基于帧的RGB摄像机遇到的挑战的最有希望的解决方案之一。这项工作的主要贡献是设计车道标记检测模型,它采用动态视觉传感器。本文探讨了使用事件摄像机通过设计卷积编码器后跟注意引导的解码器的新颖性应用了车道标记检测。编码特征的空间分辨率由致密的区域空间金字塔池(ASPP)块保持。解码器中的添加剂注意机制可提高促进车道本地化的高维输入编码特征的性能,并缓解后处理计算。使用DVS数据集进行通道提取(DET)的DVS数据集进行评估所提出的工作的功效。实验结果表明,多人和二进制车道标记检测任务中的5.54 \%$ 5.54 \%$ 5.54 \%$ 5.03 \%$ 5.03 \%$ 5.03。此外,在建议方法的联盟($ iou $)分数上的交叉点将超越最佳最先进的方法,分别以6.50 \%$ 6.50 \%$ 6.5.37 \%$ 9.37 \%$ 。
translated by 谷歌翻译
基于时空的图(STMAP)方法显示出为车辆轨迹重建处理高角度视频的巨大潜力,可以满足各种数据驱动的建模和模仿学习应用的需求。在本文中,我们开发了时空深嵌入(STDE)模型,该模型在像素和实例水平上施加了平等约束,以生成用于STMAP上车辆条纹分割的实例感知嵌入。在像素级别上,每个像素在不同范围的8-邻居像素进行编码,随后使用该编码来指导神经网络学习嵌入机制。在实例级别上,歧视性损耗函数被设计为将属于同一实例的像素更接近,并将不同实例的平均值分开。然后,通过静脉 - 沃特算法算法优化时空亲和力的输出,以获得最终的聚类结果。基于分割指标,我们的模型优于其他五个用于STMAP处理的基线,并在阴影,静态噪声和重叠的影响下显示出稳健性。该设计的模型用于处理所有公共NGSIM US-101视频,以生成完整的车辆轨迹,表明具有良好的可扩展性和适应性。最后但并非最不重要的一点是,讨论了带有STDE和未来方向的扫描线方法的优势。代码,STMAP数据集和视频轨迹在在线存储库中公开可用。 github链接:shorturl.at/jklt0。
translated by 谷歌翻译
在过去的十年中,多任务学习方法在解决全景驱动感知问题方面取得了令人鼓舞的结果,提供了高精度和高效效率。在为实时自动驾驶系统设计网络时,它已成为流行的范式,在该系统中,计算资源受到限制。本文提出了一个有效,有效的多任务学习网络,以同时执行交通对象检测,可驱动的道路区域细分和车道检测的任务。我们的模型以挑战性的BDD100K数据集的准确性和速度来实现新的最先进(SOTA)性能。特别是,与先前的SOTA模型相比,推理时间减少了一半。代码将在不久的将来发布。
translated by 谷歌翻译
准确且可靠的车道检测对于巷道维护援助和车道出发警告系统的安全性能至关重要。但是,在某些具有挑战性的情况下,很难在当前文献中主要从一个图像中准确地检测到一个单一图像的车道时获得令人满意的性能。由于车道标记是连续线,因此如果合并了以前的帧信息,则可以在当前单个图像中准确检测到的车道可以更好地推导。这项研究提出了一种新型的混合时空(ST)序列到一个深度学习结构。该体系结构充分利用了多个连续图像帧中的ST信息,以检测最后一帧中的车道标记。具体而言,混合模型集成了以下方面:(a)配备了空间卷积神经网络的单个图像特征提取模块; (b)由ST复发神经网络构建的ST特征集成模块; (c)编码器解码器结构,该结构使此图像分割问题以端到端监督的学习格式起作用。广泛的实验表明,所提出的模型体系结构可以有效地处理具有挑战性的驾驶场景,并且优于可用的最先进方法。
translated by 谷歌翻译
本文提出了一种机器学习增强的纵向扫描线方法,用于从大角度交通摄像机中提取车辆轨迹。通过将空间颞映射(STMAP)分解到稀疏前景和低秩背景,应用动态模式分解(DMD)方法来提取车辆股线。通过调整两个普遍的深度学习架构,设计了一个名为Res-Unet +的深神经网络。 RES-UNET +神经网络显着提高了基于STMAP的车辆检测的性能,DMD模型提供了许多有趣的见解,了解由Stmap保留的潜在空间结构的演变。与先前的图像处理模型和主流语义分割深神经网络进行比较模型输出。经过彻底的评估后,证明该模型对许多具有挑战性的因素来说是准确和强大的。最后但并非最不重要的是,本文从根本上解决了NGSIM轨迹数据中发现了许多质量问题。清除清洁的高质量轨迹数据,以支持交通流量和微观车辆控制的未来理论和建模研究。该方法是用于基于视频的轨迹提取的可靠解决方案,并且具有广泛的适用性。
translated by 谷歌翻译
具有深入学习神经网络(DNN)的端到端驾驶已成为行业和学术界自主驾驶的快速增长范式。然而,安全措施和可解释性仍然对此范式构成挑战。我们提出了一种端到端的驱动算法,其通过这些模型将多任务DNN,路径预测和控制模型集成在来自感官设备的数据流量的流程中,以驱动决策。它提供定量措施,以评估端到端驱动系统的整体,动态和实时性能,从而允许量化其安全性和解释性。 DNN是一个修改的UNET,是语义分割的众所周知的编码器解码器神经网络。它由一个分段,一个回归和用于车道分割,路径预测和车辆控制的两个分类任务组成。我们提出了具有不同复杂性的修改的UNET架构的三种变体,将它们与单个和多任务(MT)架构中的四种静态测量相比,并在实时仿真中识别了两种额外的动态措施中最好的任务。我们还提出了一种使用模型预测控制方法的学习和模型的纵向控制器。通过Stanley横向控制器,我们的结果表明,MTUNET在正常速度下曲率和横向偏移估计的曲率和横向偏移估计的曲率偏差估计,在正常速度下已经在真正的道路上驾驶的真实车上进行了测试。
translated by 谷歌翻译
我们专注于在不同情况下在车道检测中桥接域差异,以大大降低自动驾驶的额外注释和重新训练成本。关键因素阻碍了跨域车道检测的性能改善,即常规方法仅着眼于像素损失,同时忽略了泳道的形状和位置验证阶段。为了解决该问题,我们提出了多级域Adaptation(MLDA)框架,这是一种在三个互补语义级别的像素,实例和类别的互补语义级别处理跨域车道检测的新观点。具体而言,在像素级别上,我们建议在自我训练中应用跨级置信度限制,以应对车道和背景的不平衡置信分布。在实例层面上,我们超越像素,将分段车道视为实例,并通过三胞胎学习促进目标域中的判别特征,这有效地重建了车道的语义环境,并有助于减轻特征混乱。在类别级别,我们提出了一个自适应域间嵌入模块,以在自适应过程中利用泳道的先验位置。在两个具有挑战性的数据集(即Tusimple和Culane)中,我们的方法将车道检测性能提高了很大的利润率,与先进的领域适应算法相比,精度分别提高了8.8%和F1级的7.4%。
translated by 谷歌翻译
灵感来自语义图像分割的UNET架构,我们使用深度可分离卷曲(DSUNET)提出了一种轻量级的UNET,用于自动驾驶中的通道检测和路径预测(PP)的端到端学习。我们还使用卷积神经网络(CNN)设计和集成PP算法,以形成模拟模型(CNN-PP),可用于在定性,定量,在主机驾驶汽车驾驶中的定性,定量,动态地评估CNN的性能以及所有以实时自治方式。DSunet在模型尺寸下为5.16x较轻,推动比UNET更快1.61倍。DSUNET-PP在动态模拟中的预测曲率和路径规划的平均误差中的平均误差中的UNET-PP优于UNET-PP。Dsunet-PP在横向误差中优于修改的UNET,在真正的公路上测试。这些结果表明,DSunet对自动驾驶中的车道检测和路径预测是有效且有效的。
translated by 谷歌翻译
最近已经提出了3D车道检测的方法,以解决许多自动驾驶场景(上坡/下坡,颠簸等)中不准确的车道布局问题。先前的工作在复杂的情况下苦苦挣扎,因为它们对前视图和鸟类视图(BEV)之间的空间转换以及缺乏现实数据集的简单设计。在这些问题上,我们介绍了Persformer:具有新型基于变压器的空间特征变换模块的端到端单眼3D车道检测器。我们的模型通过参考摄像头参数来参与相关的前视本地区域来生成BEV功能。 Persformer采用统一的2D/3D锚设计和辅助任务,以同时检测2D/3D车道,从而提高功能一致性并分享多任务学习的好处。此外,我们发布了第一个大型现实世界3D车道数据集之一:OpenLane,具有高质量的注释和场景多样性。 OpenLane包含200,000帧,超过880,000个实例级别的车道,14个车道类别,以及场景标签和封闭式对象注释,以鼓励开发车道检测和更多与工业相关的自动驾驶方法。我们表明,在新的OpenLane数据集和Apollo 3D Lane合成数据集中,Persformer在3D车道检测任务中的表现明显优于竞争基线,并且在OpenLane上的2D任务中也与最新的算法相当。该项目页面可在https://github.com/openperceptionx/persformer_3dlane上找到,OpenLane数据集可在https://github.com/openperceptionx/openlane上提供。
translated by 谷歌翻译
视频分析的图像分割在不同的研究领域起着重要作用,例如智能城市,医疗保健,计算机视觉和地球科学以及遥感应用。在这方面,最近致力于发展新的细分策略;最新的杰出成就之一是Panoptic细分。后者是由语义和实例分割的融合引起的。明确地,目前正在研究Panoptic细分,以帮助获得更多对视频监控,人群计数,自主驾驶,医学图像分析的图像场景的更细致的知识,以及一般对场景更深入的了解。为此,我们介绍了本文的首次全面审查现有的Panoptic分段方法,以获得作者的知识。因此,基于所采用的算法,应用场景和主要目标的性质,执行现有的Panoptic技术的明确定义分类。此外,讨论了使用伪标签注释新数据集的Panoptic分割。继续前进,进行消融研究,以了解不同观点的Panoptic方法。此外,讨论了适合于Panoptic分割的评估度量,并提供了现有解决方案性能的比较,以告知最先进的并识别其局限性和优势。最后,目前对主题技术面临的挑战和吸引不久的将来吸引相当兴趣的未来趋势,可以成为即将到来的研究研究的起点。提供代码的文件可用于:https://github.com/elharroussomar/awesome-panoptic-egation
translated by 谷歌翻译
Datasets drive vision progress, yet existing driving datasets are impoverished in terms of visual content and supported tasks to study multitask learning for autonomous driving. Researchers are usually constrained to study a small set of problems on one dataset, while real-world computer vision applications require performing tasks of various complexities. We construct BDD100K 1 , the largest driving video dataset with 100K videos and 10 tasks to evaluate the exciting progress of image recognition algorithms on autonomous driving. The dataset possesses geographic, environmental, and weather diversity, which is useful for training models that are less likely to be surprised by new conditions. Based on this diverse dataset, we build a benchmark for heterogeneous multitask learning and study how to solve the tasks together. Our experiments show that special training strategies are needed for existing models to perform such heterogeneous tasks. BDD100K opens the door for future studies in this important venue.
translated by 谷歌翻译
本文提出了一种用于对象和场景的高质量图像分割的新方法。灵感来自于形态学图像处理技术中的扩张和侵蚀操作,像素级图像分割问题被视为挤压对象边界。从这个角度来看,提出了一种新颖且有效的\ textBF {边界挤压}模块。该模块用于从内侧和外侧方向挤压对象边界,这有助于精确掩模表示。提出了双向基于流的翘曲过程来产生这种挤压特征表示,并且设计了两个特定的损耗信号以监控挤压过程。边界挤压模块可以通过构建一些现有方法构建作为即插即用模块,可以轻松应用于实例和语义分段任务。此外,所提出的模块是重量的,因此具有实际使用的潜力。实验结果表明,我们简单但有效的设计可以在几个不同的数据集中产生高质量的结果。此外,边界上的其他几个指标用于证明我们对以前的工作中的方法的有效性。我们的方法对实例和语义分割的具有利于Coco和CityCapes数据集来产生重大改进,并且在相同的设置下以前的最先进的速度优于先前的最先进的速度。代码和模型将在\ url {https:/github.com/lxtgh/bsseg}发布。
translated by 谷歌翻译
尽管有启发式方法,贪婪的算法以及对数据统计变化的变化,但3D实例分割中的当前最新方法通常涉及聚类步骤。相比之下,我们提出了一种以每点预测方式起作用的全面3D点云实例分割方法。为此,它可以避免基于聚类的方法面临的挑战:在模型的不同任务之间引入依赖性。我们发现其成功的关键是为每个采样点分配一个合适的目标。我们建议使用最佳的传输方法来根据动态匹配成本最佳地将目标掩码分配给采样点。我们的方法在扫描仪和S3DIS基准测试方面取得了令人鼓舞的结果。所提出的方法消除了插入依赖性,因此比其他竞争方法代表了更简单,更灵活的3D实例分割框架,同时实现了提高的分割精度。
translated by 谷歌翻译
Figure 1: We introduce datasets for 3D tracking and motion forecasting with rich maps for autonomous driving. Our 3D tracking dataset contains sequences of LiDAR measurements, 360 • RGB video, front-facing stereo (middle-right), and 6-dof localization. All sequences are aligned with maps containing lane center lines (magenta), driveable region (orange), and ground height. Sequences are annotated with 3D cuboid tracks (green). A wider map view is shown in the bottom-right.
translated by 谷歌翻译
计算机视觉在智能运输系统(ITS)和交通监视中发挥了重要作用。除了快速增长的自动化车辆和拥挤的城市外,通过实施深层神经网络的实施,可以使用视频监视基础架构进行自动和高级交通管理系统(ATM)。在这项研究中,我们为实时交通监控提供了一个实用的平台,包括3D车辆/行人检测,速度检测,轨迹估算,拥塞检测以及监视车辆和行人的相互作用,都使用单个CCTV交通摄像头。我们适应了定制的Yolov5深神经网络模型,用于车辆/行人检测和增强的排序跟踪算法。还开发了基于混合卫星的基于混合卫星的逆透视图(SG-IPM)方法,用于摄像机自动校准,从而导致准确的3D对象检测和可视化。我们还根据短期和长期的时间视频数据流开发了层次结构的交通建模解决方案,以了解脆弱道路使用者的交通流量,瓶颈和危险景点。关于现实世界情景和与最先进的比较的几项实验是使用各种交通监控数据集进行的,包括从高速公路,交叉路口和城市地区收集的MIO-TCD,UA-DETRAC和GRAM-RTM,在不同的照明和城市地区天气状况。
translated by 谷歌翻译
必须在密集的注释图像上培训最先进的实例分段方法。虽然一般而言,这一要求对于生物医学图像尤其令人生畏,其中域专业知识通常需要注释,没有大的公共数据收集可用于预培训。我们建议通过基于非空间嵌入的非空间嵌入的联盟分割方法来解决密集的注释瓶颈,该方法利用所学习的嵌入空间的结构以可分散的方式提取单个实例。然后可以将分割损耗直接应用于实例,整体管道可以以完全或弱监督的方式培训,包括积极解贴的监管的具有挑战性的情况,其中为未标记的部分引入了一种新的自我监督的一致性损失训练数据。我们在不同显微镜模型以及城市景观和CVPPP实例分段基准中评估了对2D和3D分段问题的提出的方法,在后者上实现最先进的结果。该代码可用于:https://github.com/kreshuklab/spoco
translated by 谷歌翻译
任意形状的文本检测是一项具有挑战性的任务,这是由于大小和宽高比,任意取向或形状,不准确的注释等各种变化的任务。最近引起了大量关注。但是,文本的准确像素级注释是强大的,现有的场景文本检测数据集仅提供粗粒的边界注释。因此,始终存在大量错误分类的文本像素或背景像素,从而降低基于分割的文本检测方法的性能。一般来说,像素是否属于文本与与相邻注释边界的距离高度相关。通过此观察,在本文中,我们通过概率图提出了一种创新且可靠的基于分割的检测方法,以准确检测文本实例。为了具体,我们采用Sigmoid alpha函数(SAF)将边界及其内部像素之间的距离传输到概率图。但是,由于粗粒度文本边界注释的不确定性,一个概率图无法很好地覆盖复杂的概率分布。因此,我们采用一组由一系列Sigmoid alpha函数计算出的概率图来描述可能的概率分布。此外,我们提出了一个迭代模型,以学习预测和吸收概率图,以提供足够的信息来重建文本实例。最后,采用简单的区域生长算法来汇总概率图以完成文本实例。实验结果表明,我们的方法在几个基准的检测准确性方面实现了最先进的性能。
translated by 谷歌翻译