我们专注于在不同情况下在车道检测中桥接域差异,以大大降低自动驾驶的额外注释和重新训练成本。关键因素阻碍了跨域车道检测的性能改善,即常规方法仅着眼于像素损失,同时忽略了泳道的形状和位置验证阶段。为了解决该问题,我们提出了多级域Adaptation(MLDA)框架,这是一种在三个互补语义级别的像素,实例和类别的互补语义级别处理跨域车道检测的新观点。具体而言,在像素级别上,我们建议在自我训练中应用跨级置信度限制,以应对车道和背景的不平衡置信分布。在实例层面上,我们超越像素,将分段车道视为实例,并通过三胞胎学习促进目标域中的判别特征,这有效地重建了车道的语义环境,并有助于减轻特征混乱。在类别级别,我们提出了一个自适应域间嵌入模块,以在自适应过程中利用泳道的先验位置。在两个具有挑战性的数据集(即Tusimple和Culane)中,我们的方法将车道检测性能提高了很大的利润率,与先进的领域适应算法相比,精度分别提高了8.8%和F1级的7.4%。
translated by 谷歌翻译
Semantic segmentation is a key problem for many computer vision tasks. While approaches based on convolutional neural networks constantly break new records on different benchmarks, generalizing well to diverse testing environments remains a major challenge. In numerous real world applications, there is indeed a large gap between data distributions in train and test domains, which results in severe performance loss at run-time. In this work, we address the task of unsupervised domain adaptation in semantic segmentation with losses based on the entropy of the pixel-wise predictions. To this end, we propose two novel, complementary methods using (i) an entropy loss and (ii) an adversarial loss respectively. We demonstrate state-of-theart performance in semantic segmentation on two challenging "synthetic-2-real" set-ups 1 and show that the approach can also be used for detection.
translated by 谷歌翻译
本文提出了一种新颖的像素级分布正则化方案(DRSL),用于自我监督的语义分割域的适应性。在典型的环境中,分类损失迫使语义分割模型贪婪地学习捕获类间变化的表示形式,以确定决策(类)边界。由于域的转移,该决策边界在目标域中未对齐,从而导致嘈杂的伪标签对自我监督域的适应性产生不利影响。为了克服这一限制,以及捕获阶层间变化,我们通过类感知的多模式分布学习(MMDL)捕获了像素级内的类内变化。因此,捕获阶层内变化所需的信息与阶层间歧视所需的信息明确分开。因此,捕获的功能更具信息性,导致伪噪声低的伪标记。这种分离使我们能够使用前者的基于跨凝结的自学习,在判别空间和多模式分布空间中进行单独的对齐。稍后,我们通过明确降低映射到同一模式的目标和源像素之间的距离来提出一种新型的随机模式比对方法。距离度量标签上计算出的距离度量损失,并从多模式建模头部反向传播,充当与分割头共享的基本网络上的正常化程序。关于合成到真实域的适应设置的全面实验的结果,即GTA-V/Synthia to CityScapes,表明DRSL的表现优于许多现有方法(MIOU的最小余量为2.3%和2.5%,用于MIOU,而合成的MIOU到CityScapes)。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
了解驾驶场景中的雾图像序列对于自主驾驶至关重要,但是由于难以收集和注释不利天气的现实世界图像,这仍然是一项艰巨的任务。最近,自我训练策略被认为是无监督域适应的强大解决方案,通过生成目标伪标签并重新训练模型,它迭代地将模型从源域转化为目标域。但是,选择自信的伪标签不可避免地会遭受稀疏与准确性之间的冲突,这两者都会导致次优模型。为了解决这个问题,我们利用了驾驶场景的雾图图像序列的特征,以使自信的伪标签致密。具体而言,基于顺序图像数据的局部空间相似性和相邻时间对应的两个发现,我们提出了一种新型的目标域驱动的伪标签扩散(TDO-DIF)方案。它采用超像素和光学流来识别空间相似性和时间对应关系,然后扩散自信但稀疏的伪像标签,或者是由流量链接的超像素或时间对应对。此外,为了确保扩散像素的特征相似性,我们在模型重新训练阶段引入了局部空间相似性损失和时间对比度损失。实验结果表明,我们的TDO-DIF方案有助于自适应模型在两个公共可用的天然雾化数据集(超过雾气的Zurich and Forggy驾驶)上实现51.92%和53.84%的平均跨工会(MIOU),这超过了最态度ART无监督的域自适应语义分割方法。可以在https://github.com/velor2012/tdo-dif上找到模型和数据。
translated by 谷歌翻译
Recent deep networks achieved state of the art performance on a variety of semantic segmentation tasks. Despite such progress, these models often face challenges in real world "wild tasks" where large difference between labeled training/source data and unseen test/target data exists. In particular, such difference is often referred to as "domain gap", and could cause significantly decreased performance which cannot be easily remedied by further increasing the representation power. Unsupervised domain adaptation (UDA) seeks to overcome such problem without target domain labels. In this paper, we propose a novel UDA framework based on an iterative self-training (ST) procedure, where the problem is formulated as latent variable loss minimization, and can be solved by alternatively generating pseudo labels on target data and re-training the model with these labels. On top of ST, we also propose a novel classbalanced self-training (CBST) framework to avoid the gradual dominance of large classes on pseudo-label generation, and introduce spatial priors to refine generated labels. Comprehensive experiments show that the proposed methods achieve state of the art semantic segmentation performance under multiple major UDA settings.⋆ indicates equal contribution.
translated by 谷歌翻译
无监督的域适应性(UDA)旨在使在标记的源域上训练的模型适应未标记的目标域。在本文中,我们提出了典型的对比度适应(PROCA),这是一种无监督域自适应语义分割的简单有效的对比度学习方法。以前的域适应方法仅考虑跨各个域的阶级内表示分布的对齐,而阶层间结构关系的探索不足,从而导致目标域上的对齐表示可能不像在源上歧视的那样容易歧视。域了。取而代之的是,ProCA将类间信息纳入班级原型,并采用以班级为中心的分布对齐进行适应。通过将同一类原型与阳性和其他类原型视为实现以集体为中心的分配对齐方式的负面原型,Proca在经典领域适应任务上实现了最先进的性能,{\ em i.e. text {and} synthia $ \ to $ cityScapes}。代码可在\ href {https://github.com/jiangzhengkai/proca} {proca}获得代码
translated by 谷歌翻译
受益于从特定情况(源)收集的相当大的像素级注释,训练有素的语义分段模型表现得非常好,但由于大域移位而导致的新情况(目标)失败。为了缓解域间隙,先前的跨域语义分段方法始终在域对齐期间始终假设源数据和目标数据的共存。但是,在实际方案中访问源数据可能会引发隐私问题并违反知识产权。为了解决这个问题,我们专注于一个有趣和具有挑战性的跨域语义分割任务,其中仅向目标域提供训练源模型。具体地,我们提出了一种称为ATP的统一框架,其包括三种方案,即特征对准,双向教学和信息传播。首先,我们设计了课程熵最小化目标,以通过提供的源模型隐式对准目标功能与看不见的源特征。其次,除了vanilla自我训练中的正伪标签外,我们是第一个向该领域引入负伪标签的,并开发双向自我训练策略,以增强目标域中的表示学习。最后,采用信息传播方案来通过伪半监督学习进一步降低目标域内的域内差异。综合与跨城市驾驶数据集的广泛结果验证\ TextBF {ATP}产生最先进的性能,即使是需要访问源数据的方法。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work. However, domain discrepancies in low-level image statistics and high-level contexts compromise the segmentation performance over the target domain. A key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly. Unfortunately, there is a lack of such unified approaches for UDA tasks in the existing literature. This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation. Concretely, for image-level domain shifts, we propose a global photometric alignment module and a global texture alignment module that align images in the source and target domains in terms of image-level properties. For feature-level domain shifts, we perform global manifold alignment by projecting pixel features from both domains onto the feature manifold of the source domain; and we further regularize category centers in the source domain through a category-oriented triplet loss and perform target domain consistency regularization over augmented target domain images. Experimental results demonstrate that our pipeline significantly outperforms previous methods. In the commonly tested GTA5$\rightarrow$Cityscapes task, our proposed method using Deeplab V3+ as the backbone surpasses previous SOTA by 8%, achieving 58.2% in mIoU.
translated by 谷歌翻译
We consider the problem of unsupervised domain adaptation in semantic segmentation. A key in this campaign consists in reducing the domain shift, i.e., enforcing the data distributions of the two domains to be similar. One of the common strategies is to align the marginal distribution in the feature space through adversarial learning. However, this global alignment strategy does not consider the category-level joint distribution. A possible consequence of such global movement is that some categories which are originally well aligned between the source and target may be incorrectly mapped, thus leading to worse segmentation results in target domain. To address this problem, we introduce a category-level adversarial network, aiming to enforce local semantic consistency during the trend of global alignment. Our idea is to take a close look at the category-level joint distribution and align each class with an adaptive adversarial loss. Specifically, we reduce the weight of the adversarial loss for category-level aligned features while increasing the adversarial force for those poorly aligned. In this process, we decide how well a feature is category-level aligned between source and target by a co-training approach. In two domain adaptation tasks, i.e., GTA5 → Cityscapes and SYN-THIA → Cityscapes, we validate that the proposed method matches the state of the art in segmentation accuracy.
translated by 谷歌翻译
最近,无监督的人重新识别(RE-ID)引起了人们的关注,因为其开放世界情景设置有限,可用的带注释的数据有限。现有的监督方法通常无法很好地概括在看不见的域上,而无监督的方法(大多数缺乏多范围的信息),并且容易患有确认偏见。在本文中,我们旨在从两个方面从看不见的目标域上找到更好的特征表示形式,1)在标记的源域上进行无监督的域适应性和2)2)在未标记的目标域上挖掘潜在的相似性。此外,提出了一种协作伪标记策略,以减轻确认偏见的影响。首先,使用生成对抗网络将图像从源域转移到目标域。此外,引入了人身份和身份映射损失,以提高生成图像的质量。其次,我们提出了一个新颖的协作多元特征聚类框架(CMFC),以学习目标域的内部数据结构,包括全局特征和部分特征分支。全球特征分支(GB)在人体图像的全球特征上采用了无监督的聚类,而部分特征分支(PB)矿山在不同人体区域内的相似性。最后,在两个基准数据集上进行的广泛实验表明,在无监督的人重新设置下,我们的方法的竞争性能。
translated by 谷歌翻译
The network trained for domain adaptation is prone to bias toward the easy-to-transfer classes. Since the ground truth label on the target domain is unavailable during training, the bias problem leads to skewed predictions, forgetting to predict hard-to-transfer classes. To address this problem, we propose Cross-domain Moving Object Mixing (CMOM) that cuts several objects, including hard-to-transfer classes, in the source domain video clip and pastes them into the target domain video clip. Unlike image-level domain adaptation, the temporal context should be maintained to mix moving objects in two different videos. Therefore, we design CMOM to mix with consecutive video frames, so that unrealistic movements are not occurring. We additionally propose Feature Alignment with Temporal Context (FATC) to enhance target domain feature discriminability. FATC exploits the robust source domain features, which are trained with ground truth labels, to learn discriminative target domain features in an unsupervised manner by filtering unreliable predictions with temporal consensus. We demonstrate the effectiveness of the proposed approaches through extensive experiments. In particular, our model reaches mIoU of 53.81% on VIPER to Cityscapes-Seq benchmark and mIoU of 56.31% on SYNTHIA-Seq to Cityscapes-Seq benchmark, surpassing the state-of-the-art methods by large margins.
translated by 谷歌翻译
虽然监督语义分割存在重大进展,但由于领域偏差,将分段模型部署到解除域来仍然具有挑战性。域适应可以通过将知识从标记的源域传输到未标记的目标域来帮助。以前的方法通常尝试执行对全局特征的适应,然而,通常忽略要计入特征空间中的每个像素的本地语义附属机构,导致较少的可辨性。为解决这个问题,我们提出了一种用于细粒度阶级对齐的新型语义原型对比学习框架。具体地,语义原型提供了用于每个像素鉴别的表示学习的监控信号,并且需要在特征空间中的源极和目标域的每个像素来反映相应的语义原型的内容。通过这种方式,我们的框架能够明确地制作较近的类别的像素表示,并且进一步越来越多地分开,以改善分割模型的鲁棒性以及减轻域移位问题。与最先进的方法相比,我们的方法易于实施并达到优异的结果,如众多实验所展示的那样。代码在[此HTTPS URL](https://github.com/binhuixie/spcl)上公开可用。
translated by 谷歌翻译
在无监督的域自适应(UDA)语义分割中,基于蒸馏的方法目前在性能上占主导地位。但是,蒸馏技术需要使多阶段的过程和许多培训技巧复杂化。在本文中,我们提出了一种简单而有效的方法,可以实现高级蒸馏方法的竞争性能。我们的核心思想是从边界和功能的观点充分探索目标域信息。首先,我们提出了一种新颖的混合策略,以产生具有地面标签的高质量目标域边界。与以前的作品中的源域边界不同,我们选择了高信心目标域区域,然后将其粘贴到源域图像中。这样的策略可以使用正确的标签在目标域(目标域对象区域的边缘)中生成对象边界。因此,可以通过学习混合样品来有效地捕获目标域的边界信息。其次,我们设计了多层对比损失,以改善目标域数据的表示,包括像素级和原型级对比度学习。通过结合两种建议的方法,可以提取更多的判别特征,并且可以更好地解决目标域的硬对象边界。对两个常用基准测试的实验结果(\ textit {i.e。},gta5 $ \ rightarrow $ cityScapes and synthia $ \ rightarrow $ cityScapes)表明,我们的方法在复杂的蒸馏方法上取得了竞争性能。值得注意的是,对于Synthia $ \ rightarrow $ CityScapes方案,我们的方法以$ 57.8 \%$ MIOU和$ 64.6 \%$ MIOU的16堂课和16堂课实现了最先进的性能。代码可在https://github.com/ljjcoder/ehtdi上找到。
translated by 谷歌翻译
本文提出FogAdapt,一种用于密集有雾场景的语义细分域的新方法。虽然已经针对显着的研究来减少语义分割中的域移位,但对具有恶劣天气条件的场景的适应仍然是一个开放的问题。由于天气状况,如雾,烟雾和雾度,加剧了域移位的场景的可见性,从而使得在这种情况下进行了无监督的适应性。我们提出了一种自熵和多尺度信息增强的自我监督域适应方法(FOGADAPT),以最大限度地减少有雾场景分割的域移位。由经验证据支持,雾密度的增加导致分割概率的高自熵性,我们引入了基于自熵的损耗功能来引导适应方法。此外,在不同的图像尺度上获得的推论由不确定性组合并加权,以生成目标域的尺度不变伪标签。这些规模不变的伪标签对可见性和比例变化具有鲁棒性。我们在真正的雾景场景中评估了真正的清晰天气场景模型,适应和综合非雾图像到真正的雾场景适应情景。我们的实验表明,FogAdapt在有雾图像的语义分割中的目前最先进的情况下显着优异。具体而言,通过考虑标准设置与最先进的(SOTA)方法相比,FogaDATK在Foggy苏黎世上获得3.8%,有雾的驾驶密集为6.0%,而在Miou的雾化驾驶的3.6%,在Miou,在MiOOP中改编为有雾的苏黎世。
translated by 谷歌翻译
语义细分是智能车辆了解环境的重要任务。当前的深度学习方法需要大量的标记数据进行培训。手动注释很昂贵,而模拟器可以提供准确的注释。但是,在实际场景中应用时,使用模拟器数据训练的语义分割模型的性能将大大降低。对于语义分割的无监督域适应性(UDA)最近引起了越来越多的研究注意力,旨在减少域间隙并改善目标域的性能。在本文中,我们提出了一种新型的基于两阶段熵的UDA方法,用于语义分割。在第一阶段,我们设计了一个阈值适应的无监督局灶性损失,以使目标域中的预测正常,该预测具有轻度的梯度中和机制,并减轻了在基于熵方法中几乎没有优化硬样品的问题。在第二阶段,我们引入了一种名为跨域图像混合(CIM)的数据增强方法,以弥合两个域的语义知识。我们的方法在合成景观和gta5-to-cityscapes上使用DeepLabV2和使用轻量级的Bisenet实现了最新的58.4%和59.6%的MIOS和59.6%的Mious。
translated by 谷歌翻译
深度学习极大地提高了语义细分的性能,但是,它的成功依赖于大量注释的培训数据的可用性。因此,许多努力致力于域自适应语义分割,重点是将语义知识从标记的源域转移到未标记的目标域。现有的自我训练方法通常需要多轮训练,而基于对抗训练的另一个流行框架已知对超参数敏感。在本文中,我们提出了一个易于训练的框架,该框架学习了域自适应语义分割的域不变原型。特别是,我们表明域的适应性与很少的学习共享一个共同的角色,因为两者都旨在识别一些从大量可见数据中学到的知识的看不见的数据。因此,我们提出了一个统一的框架,用于域适应和很少的学习。核心思想是使用从几个镜头注释的目标图像中提取的类原型来对源图像和目标图像的像素进行分类。我们的方法仅涉及一个阶段训练,不需要对大规模的未经通知的目标图像进行培训。此外,我们的方法可以扩展到域适应性和几乎没有射击学习的变体。关于适应GTA5到CITYSCAPES和合成景观的实验表明,我们的方法实现了对最先进的竞争性能。
translated by 谷歌翻译
语义细分是一种关键技术,涉及高分辨率遥感(HRS)图像的自动解释,并引起了遥感社区的广泛关注。由于其层次表示能力,深度卷积神经网络(DCNN)已成功应用于HRS图像语义分割任务。但是,对大量培训数据的严重依赖性以及对数据分布变化的敏感性严重限制了DCNNS在HRS图像的语义分割中的潜在应用。这项研究提出了一种新型的无监督域适应性语义分割网络(MemoryAdaptnet),用于HRS图像的语义分割。 MemoryAdaptnet构建了一种输出空间对抗学习方案,以弥合源域和目标域之间的域分布差异,并缩小域移位的影响。具体而言,我们嵌入了一个不变的特征内存模块来存储不变的域级上下文信息,因为从对抗学习获得的功能仅代表当前有限输入的变体特征。该模块由类别注意力驱动的不变域级上下文集合模块集成到当前伪不变功能,以进一步增强像素表示。基于熵的伪标签滤波策略用于更新当前目标图像的高额伪不变功能的内存模块。在三个跨域任务下进行的广泛实验表明,我们提出的记忆ADAPTNET非常优于最新方法。
translated by 谷歌翻译
在语义细分中进行了无监督的域的适应,以减轻对昂贵像素的依赖的依赖。它利用标有标记的源域数据集以及未标记的目标域图像来学习分割网络。在本文中,我们观察到现有的域不变学习框架的两个主要问题。 (1)由于特征分布对齐而分心,网络不能专注于分割任务。 (2)拟合源域数据很好地损害了目标域性能。为了解决这些问题,我们提出了减轻过度拟合源域的脱钩,并使最终模型能够更多地专注于细分任务。此外,我们提出自我歧视(SD),并引入辅助分类器,以使用伪标签学习更多歧视目标域特征。最后,我们建议在线增强自我训练(OEST),以在线方式上下文提高伪标签的质量。实验表明,我们的方法优于现有的最新方法,广泛的消融研究验证了每个组件的有效性。代码可在https://github.com/dvlab-research/decouplenet上找到。
translated by 谷歌翻译
大多数现有的多源域适配(MSDA)方法通过特征分布对准最小化多个源 - 目标域对之间的距离,从单个源设置借用的方法。但是,对于不同的源极域,对齐成对特征分布是具有挑战性的,甚至可以对MSDA进行反效率。在本文中,我们介绍了一种新颖的方法:可转让的属性学习。动机很简单:虽然不同的域可以具有急剧不同的视野,但它们包含相同的类类,其特征在一起相同的属性;因此,MSDA模型应该专注于学习目标域的最可转换的属性。采用这种方法,我们提出了域名关注一致性网络,称为DAC网。关键设计是一个特征通道注意模块,旨在识别可转移功能(属性)。重要的是,注意模块受到一致性损失的监督,这对源极和目标域之间的信道注意权重的分布施加。此外,为了促进对目标数据的鉴别特征学习,我们将伪标记与类紧凑性丢失相结合,以最小化目标特征和分类器的权重向量之间的距离。在三个MSDA基准测试中进行了广泛的实验表明,我们的DAC-NET在所有这些中实现了新的最新性能。
translated by 谷歌翻译