灵感来自语义图像分割的UNET架构,我们使用深度可分离卷曲(DSUNET)提出了一种轻量级的UNET,用于自动驾驶中的通道检测和路径预测(PP)的端到端学习。我们还使用卷积神经网络(CNN)设计和集成PP算法,以形成模拟模型(CNN-PP),可用于在定性,定量,在主机驾驶汽车驾驶中的定性,定量,动态地评估CNN的性能以及所有以实时自治方式。DSunet在模型尺寸下为5.16x较轻,推动比UNET更快1.61倍。DSUNET-PP在动态模拟中的预测曲率和路径规划的平均误差中的平均误差中的UNET-PP优于UNET-PP。Dsunet-PP在横向误差中优于修改的UNET,在真正的公路上测试。这些结果表明,DSunet对自动驾驶中的车道检测和路径预测是有效且有效的。
translated by 谷歌翻译
具有深入学习神经网络(DNN)的端到端驾驶已成为行业和学术界自主驾驶的快速增长范式。然而,安全措施和可解释性仍然对此范式构成挑战。我们提出了一种端到端的驱动算法,其通过这些模型将多任务DNN,路径预测和控制模型集成在来自感官设备的数据流量的流程中,以驱动决策。它提供定量措施,以评估端到端驱动系统的整体,动态和实时性能,从而允许量化其安全性和解释性。 DNN是一个修改的UNET,是语义分割的众所周知的编码器解码器神经网络。它由一个分段,一个回归和用于车道分割,路径预测和车辆控制的两个分类任务组成。我们提出了具有不同复杂性的修改的UNET架构的三种变体,将它们与单个和多任务(MT)架构中的四种静态测量相比,并在实时仿真中识别了两种额外的动态措施中最好的任务。我们还提出了一种使用模型预测控制方法的学习和模型的纵向控制器。通过Stanley横向控制器,我们的结果表明,MTUNET在正常速度下曲率和横向偏移估计的曲率和横向偏移估计的曲率偏差估计,在正常速度下已经在真正的道路上驾驶的真实车上进行了测试。
translated by 谷歌翻译
由于资源限制,高效的计算系统长期以来一直是设计自动驾驶汽车的人的关键需求。此外,传感器成本和尺寸限制了自动驾驶汽车的开发。本文为基于视觉的自动车辆运行提供了有效的框架;前置摄像头和一些便宜的雷达是驱动环境感知的所需传感器。所提出的算法包括一个多任务UNET(MTUNET)网络,用于提取图像特征和约束的迭代迭代线性二次调节器(CILQR)模块,用于快速侧向运动和纵向运动计划。 MTUNET旨在同时求解车道线分割,自我车辆标题角度回归,道路类型分类和交通对象检测任务时,当尺寸228 x 228的RGB图像被送入其中时,其速度约为40 fps。然后,CILQR算法将处理的MTUNET输出和雷达数据作为输入,以产生驾驶命令,以进行侧向和纵向车辆自动化指导;两个最佳控制问题都可以在1 ms内解决。所提出的CILQR控制器比顺序二次编程(SQP)方法更有效,并且可以与MTUNET合作以在未看到的模拟环境中自动驾驶汽车,以实现泳道和汽车保护操作。我们的实验表明,提出的自主驾驶系统适用于现代汽车。
translated by 谷歌翻译
现代车辆配备各种驾驶员辅助系统,包括自动车道保持,这防止了无意的车道偏离。传统车道检测方法采用了手工制作或基于深度的学习功能,然后使用基于帧的RGB摄像机进行通道提取的后处理技术。用于车道检测任务的帧的RGB摄像机的利用易于照明变化,太阳眩光和运动模糊,这限制了车道检测方法的性能。在自主驾驶中的感知堆栈中结合了一个事件摄像机,用于自动驾驶的感知堆栈是用于减轻基于帧的RGB摄像机遇到的挑战的最有希望的解决方案之一。这项工作的主要贡献是设计车道标记检测模型,它采用动态视觉传感器。本文探讨了使用事件摄像机通过设计卷积编码器后跟注意引导的解码器的新颖性应用了车道标记检测。编码特征的空间分辨率由致密的区域空间金字塔池(ASPP)块保持。解码器中的添加剂注意机制可提高促进车道本地化的高维输入编码特征的性能,并缓解后处理计算。使用DVS数据集进行通道提取(DET)的DVS数据集进行评估所提出的工作的功效。实验结果表明,多人和二进制车道标记检测任务中的5.54 \%$ 5.54 \%$ 5.54 \%$ 5.03 \%$ 5.03 \%$ 5.03。此外,在建议方法的联盟($ iou $)分数上的交叉点将超越最佳最先进的方法,分别以6.50 \%$ 6.50 \%$ 6.5.37 \%$ 9.37 \%$ 。
translated by 谷歌翻译
Speed estimation of an ego vehicle is crucial to enable autonomous driving and advanced driver assistance technologies. Due to functional and legacy issues, conventional methods depend on in-car sensors to extract vehicle speed through the Controller Area Network bus. However, it is desirable to have modular systems that are not susceptible to external sensors to execute perception tasks. In this paper, we propose a novel 3D-CNN with masked-attention architecture to estimate ego vehicle speed using a single front-facing monocular camera. To demonstrate the effectiveness of our method, we conduct experiments on two publicly available datasets, nuImages and KITTI. We also demonstrate the efficacy of masked-attention by comparing our method with a traditional 3D-CNN.
translated by 谷歌翻译
本文提出了一种机器学习增强的纵向扫描线方法,用于从大角度交通摄像机中提取车辆轨迹。通过将空间颞映射(STMAP)分解到稀疏前景和低秩背景,应用动态模式分解(DMD)方法来提取车辆股线。通过调整两个普遍的深度学习架构,设计了一个名为Res-Unet +的深神经网络。 RES-UNET +神经网络显着提高了基于STMAP的车辆检测的性能,DMD模型提供了许多有趣的见解,了解由Stmap保留的潜在空间结构的演变。与先前的图像处理模型和主流语义分割深神经网络进行比较模型输出。经过彻底的评估后,证明该模型对许多具有挑战性的因素来说是准确和强大的。最后但并非最不重要的是,本文从根本上解决了NGSIM轨迹数据中发现了许多质量问题。清除清洁的高质量轨迹数据,以支持交通流量和微观车辆控制的未来理论和建模研究。该方法是用于基于视频的轨迹提取的可靠解决方案,并且具有广泛的适用性。
translated by 谷歌翻译
在过去的十年中,多任务学习方法在解决全景驱动感知问题方面取得了令人鼓舞的结果,提供了高精度和高效效率。在为实时自动驾驶系统设计网络时,它已成为流行的范式,在该系统中,计算资源受到限制。本文提出了一个有效,有效的多任务学习网络,以同时执行交通对象检测,可驱动的道路区域细分和车道检测的任务。我们的模型以挑战性的BDD100K数据集的准确性和速度来实现新的最先进(SOTA)性能。特别是,与先前的SOTA模型相比,推理时间减少了一半。代码将在不久的将来发布。
translated by 谷歌翻译
公路障碍检测是一个重要的研究领域,属于智能运输基础设施系统的范围。基于视觉的方法的使用为此类系统提供了准确且具有成本效益的解决方案。在这篇研究论文中,我们提出了一种使用仪表板视频的自动驾驶自动驾驶汽车的威胁检测机制,以确保在其视觉范围内的道路上存在任何不必要的障碍物。此信息可以帮助车辆的计划安全。有四个主要组件,即Yolo来识别对象,高级车道检测算法,多回归模型,用于测量对象与摄像机的距离,测量安全速度的两秒钟规则和限制速度。此外,我们已经使用了车祸数据集(CCD)来计算模型的准确性。Yolo算法的精度约为93%。我们提出的威胁检测模型(TDM)的最终准确性为82.65%。
translated by 谷歌翻译
这项工作提出了一种新的方法,可以使用有效的鸟类视图表示和卷积神经网络在高速公路场景中预测车辆轨迹。使用基本的视觉表示,很容易将车辆位置,运动历史,道路配置和车辆相互作用轻松包含在预测模型中。 U-NET模型已被选为预测内核,以使用图像到图像回归方法生成场景的未来视觉表示。已经实施了一种方法来从生成的图形表示中提取车辆位置以实现子像素分辨率。该方法已通过预防数据集(一个板载传感器数据集)进行了培训和评估。已经评估了不同的网络配置和场景表示。这项研究发现,使用线性终端层和车辆的高斯表示,具有6个深度水平的U-NET是最佳性能配置。发现使用车道标记不会改善预测性能。平均预测误差为0.47和0.38米,对于纵向和横向坐标的最终预测误差分别为0.76和0.53米,预测轨迹长度为2.0秒。与基线方法相比,预测误差低至50%。
translated by 谷歌翻译
Figure 1: We introduce datasets for 3D tracking and motion forecasting with rich maps for autonomous driving. Our 3D tracking dataset contains sequences of LiDAR measurements, 360 • RGB video, front-facing stereo (middle-right), and 6-dof localization. All sequences are aligned with maps containing lane center lines (magenta), driveable region (orange), and ground height. Sequences are annotated with 3D cuboid tracks (green). A wider map view is shown in the bottom-right.
translated by 谷歌翻译
Multi-modal fusion is a basic task of autonomous driving system perception, which has attracted many scholars' interest in recent years. The current multi-modal fusion methods mainly focus on camera data and LiDAR data, but pay little attention to the kinematic information provided by the bottom sensors of the vehicle, such as acceleration, vehicle speed, angle of rotation. These information are not affected by complex external scenes, so it is more robust and reliable. In this paper, we introduce the existing application fields of vehicle bottom information and the research progress of related methods, as well as the multi-modal fusion methods based on bottom information. We also introduced the relevant information of the vehicle bottom information data set in detail to facilitate the research as soon as possible. In addition, new future ideas of multi-modal fusion technology for autonomous driving tasks are proposed to promote the further utilization of vehicle bottom information.
translated by 谷歌翻译
受到人类使用多种感觉器官感知世界的事实的启发,具有不同方式的传感器在端到端驾驶中部署,以获得3D场景的全球环境。在以前的作品中,相机和激光镜的输入通过变压器融合,以更好地驾驶性能。通常将这些输入进一步解释为高级地图信息,以帮助导航任务。然而,从复杂地图输入中提取有用的信息很具有挑战性,因为冗余信息可能会误导代理商并对驾驶性能产生负面影响。我们提出了一种新颖的方法,可以从矢量化高清(HD)地图中有效提取特征,并将其利用在端到端驾驶任务中。此外,我们设计了一个新的专家,以通过考虑多道路规则来进一步增强模型性能。实验结果证明,两种提出的改进都可以使我们的代理人与其他方法相比获得卓越的性能。
translated by 谷歌翻译
研究表明,自治车辆(AVS)在由人类驱动因素组成的交通环境中保守,不适应当地条件和社会文化规范。众所周知,如果存在理解人类驱动程序的行为,则可以设计社会意识的AVS。我们提出了一种利用机器学习来预测人类驱动程序的行为的方法。这类似于人类如何隐含地解释道路上司机的行为,只能观察其车辆的轨迹。我们使用图形理论工具从轨迹和机器学习中提取驾驶员行为特征,以在流量和驾驶员行为中获得车辆的提取轨迹之间的计算映射。与此域中的现有方法相比,我们证明我们的方法是强大的,一般的,并且可扩展到广泛的应用程序,如自主导航。我们评估我们在美国,印度,中国和新加坡捕获的现实世界交通数据集以及模拟中的方法。
translated by 谷歌翻译
Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module.
translated by 谷歌翻译
Visual perception plays an important role in autonomous driving. One of the primary tasks is object detection and identification. Since the vision sensor is rich in color and texture information, it can quickly and accurately identify various road information. The commonly used technique is based on extracting and calculating various features of the image. The recent development of deep learning-based method has better reliability and processing speed and has a greater advantage in recognizing complex elements. For depth estimation, vision sensor is also used for ranging due to their small size and low cost. Monocular camera uses image data from a single viewpoint as input to estimate object depth. In contrast, stereo vision is based on parallax and matching feature points of different views, and the application of deep learning also further improves the accuracy. In addition, Simultaneous Location and Mapping (SLAM) can establish a model of the road environment, thus helping the vehicle perceive the surrounding environment and complete the tasks. In this paper, we introduce and compare various methods of object detection and identification, then explain the development of depth estimation and compare various methods based on monocular, stereo, and RDBG sensors, next review and compare various methods of SLAM, and finally summarize the current problems and present the future development trends of vision technologies.
translated by 谷歌翻译
在过去几年中,自动驾驶一直是最受欢迎,最具挑战性的主题之一。在实现完全自治的道路上,研究人员使用了各种传感器,例如LIDAR,相机,惯性测量单元(IMU)和GPS,并开发了用于自动驾驶应用程序的智能算法,例如对象检测,对象段,障碍,避免障碍物,避免障碍物和障碍物,以及路径计划。近年来,高清(HD)地图引起了很多关注。由于本地化中高清图的精度和信息水平很高,因此它立即成为自动驾驶的关键组成部分之一。从Baidu Apollo,Nvidia和TomTom等大型组织到个别研究人员,研究人员创建了用于自主驾驶的不同场景和用途的高清地图。有必要查看高清图生成的最新方法。本文回顾了最新的高清图生成技术,这些技术利用了2D和3D地图生成。这篇评论介绍了高清图的概念及其在自主驾驶中的有用性,并详细概述了高清地图生成技术。我们还将讨论当前高清图生成技术的局限性,以激发未来的研究。
translated by 谷歌翻译
Lane detection is a long-standing task and a basic module in autonomous driving. The task is to detect the lane of the current driving road, and provide relevant information such as the ID, direction, curvature, width, length, with visualization. Our work is based on CNN backbone DLA-34, along with Affinity Fields, aims to achieve robust detection of various lanes without assuming the number of lanes. Besides, we investigate novel decoding methods to achieve more efficient lane detection algorithm.
translated by 谷歌翻译
随着智能车辆和先进驾驶员援助系统(ADAS)的快速发展,新趋势是人类驾驶员的混合水平将参与运输系统。因此,在这种情况下,司机的必要视觉指导对于防止潜在风险至关重要。为了推进视觉指导系统的发展,我们介绍了一种新的视觉云数据融合方法,从云中集成相机图像和数字双胞胎信息,帮助智能车辆做出更好的决策。绘制目标车辆边界框并在物体检测器的帮助下(在EGO车辆上运行)和位置信息(从云接收)匹配。使用深度图像作为附加特征源获得最佳匹配结果,从工会阈值下面的0.7交叉口下的精度为79.2%。进行了对车道改变预测的案例研究,以表明所提出的数据融合方法的有效性。在案例研究中,提出了一种多层的Perceptron算法,用修改的车道改变预测方法提出。从Unity游戏发动机获得的人型仿真结果表明,在安全性,舒适度和环境可持续性方面,拟议的模型可以显着提高高速公路驾驶性能。
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译