由于在许多领域的无与伦比的成功,例如计算机视觉,自然语言处理,推荐系统以及最近在模拟多物理问题和预测非线性动力学系统方面,深度学习引起了人们的关注。但是,建模和预测混乱系统的动态仍然是一个开放的研究问题,因为训练深度学习模型需要大数据,在许多情况下,这并不总是可用的。可以通过从模拟结果获得的其他信息以及执行混乱系统的物理定律来培训这样的深度学习者。本文考虑了极端事件及其动态,并提出了基于深层神经网络的优雅模型,称为基于知识的深度学习(KDL)。我们提出的KDL可以通过直接从动力学及其微分方程中对真实和模拟数据进行联合培训来学习控制混乱系统的复杂模式。这些知识被转移到模型和预测现实世界中的混乱事件,表现出极端行为。我们通过在三个实际基准数据集上进行评估来验证模型的效率:El Nino海面温度,San Juan登革热病毒感染和BJ {\ o} rn {\ o} ya每日降水,所有这些都受极端事件的控制'动态。利用对极端事件和基于物理的损失功能的先验知识来领导神经网络学习,我们即使在小型数据制度中也可以确保身体一致,可推广和准确的预测。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
深度学习方法的应用加快了挑战性电流问题的分辨率,最近显示出令人鼓舞的结果。但是,电力系统动力学不是快照,稳态操作。必须考虑这些动力学,以确保这些模型提供的最佳解决方案遵守实用的动力约束,避免频率波动和网格不稳定性。不幸的是,由于其高计算成本,基于普通或部分微分方程的动态系统模型通常不适合在控制或状态估计中直接应用。为了应对这些挑战,本文介绍了一种机器学习方法,以近乎实时近似电力系统动态的行为。该拟议的框架基于梯度增强的物理知识的神经网络(GPINNS),并编码有关电源系统的基本物理定律。拟议的GPINN的关键特征是它的训练能力而无需生成昂贵的培训数据。该论文说明了在单机无限总线系统中提出的方法在预测转子角度和频率的前进和反向问题中的潜力,以及不确定的参数,例如惯性和阻尼,以展示其在一系列电力系统应用中的潜力。
translated by 谷歌翻译
来自数据的顺序模式是各种时间序列预测任务的核心。深度学习模型大大优于许多传统模型,但是这些黑框模型通常缺乏预测和决策的解释性。为了揭示具有可理解的数学表达式的潜在趋势,科学家和经济学家倾向于使用部分微分方程(PDE)来解释顺序模式的高度非线性动力学。但是,它通常需要领域专家知识和一系列简化的假设,这些假设并不总是实用的,并且可能偏离不断变化的世界。是否可以动态地学习与数据的差异关系以解释时间不断发展的动态?在这项工作中,我们提出了一个学习框架,该框架可以自动从顺序数据中获取可解释的PDE模型。特别是,该框架由可学习的差分块组成,称为$ p $ blocks,事实证明,该框架能够近似于理论上随着时间不断变化的复杂连续功能。此外,为了捕获动力学变化,该框架引入了元学习控制器,以动态优化混合PDE模型的超参数。 《时代》系列预测金融,工程和健康数据的广泛实验表明,我们的模型可以提供有价值的解释性并实现与最先进模型相当的性能。从经验研究中,我们发现学习一些差异操作员可能会捕获无需大量计算复杂性的顺序动力学的主要趋势。
translated by 谷歌翻译
许多物理过程,例如天气现象或流体力学由部分微分方程(PDE)管辖。使用神经网络建模这种动态系统是一个新兴的研究领域。然而,目前的方法以各种方式限制:它们需要关于控制方程的先验知识,并限于线性或一阶方程。在这项工作中,我们提出了一种将卷积神经网络(CNNS)与可微分的颂歌求解器结合到模型动力系统的模型。我们表明,标准PDE求解器中使用的线路方法可以使用卷曲来表示,这使得CNN是对参数化任意PDE动态的自然选择。我们的模型可以应用于任何数据而不需要任何关于管理PDE的知识。我们评估通过求解各种PDE而产生的数据集的NeuralPDE,覆盖更高的订单,非线性方程和多个空间尺寸。
translated by 谷歌翻译
部分微分方程(PDE)在研究大量科学和工程问题方面发挥着至关重要的作用。数值求解的非线性和/或高维PDE通常是一个具有挑战性的任务。灵感来自传统有限差分和有限元的方法和机器学习的新兴进步,我们提出了一个名为神经PDE的序列深度学习框架,这允许通过使用双向来自动学习从现有数据的任何时间依赖于现有数据的管理规则LSTM编码器,并预测下一个时间步长数据。我们所提出的框架的一个关键特征是,神经PDE能够同时学习和模拟多尺度变量。我们通过一维PDE的一系列示例测试神经PDE到高维和非线性复杂流体模型。结果表明,神经PDE能够学习初始条件,边界条件和差分运营商,而不知道PDE系统的特定形式。在我们的实验中,神经PDE可以有效地提取20个时期训练内的动态,并产生准确的预测。此外,与在学习PDE中的传统机器学习方法不同,例如CNN和MLP,这需要用于模型精度的巨大参数,神经PDE在所有时间步骤中共享参数,从而显着降低了计算复杂性并导致快速学习算法。
translated by 谷歌翻译
虽然外源变量对时间序列分析的性能改善有重大影响,但在当前的连续方法中很少考虑这些序列间相关性和时间依赖性。多元时间序列的动力系统可以用复杂的未知偏微分方程(PDE)进行建模,这些方程(PDE)在科学和工程的许多学科中都起着重要作用。在本文中,我们提出了一个任意步骤预测的连续时间模型,以学习多元时间序列中的未知PDE系统,其管理方程是通过自我注意和封闭的复发神经网络参数化的。所提出的模型\下划线{变量及其对目标系列的影响。重要的是,使用特殊设计的正则化指南可以将模型简化为正则化的普通微分方程(ODE)问题,这使得可以触犯的PDE问题以获得数值解决方案,并且可行,以预测目标序列的多个未来值。广泛的实验表明,我们提出的模型可以在强大的基准中实现竞争精度:平均而言,它通过降低RMSE的$ 9.85 \%$和MAE的MAE $ 13.98 \%$的基线表现优于最佳基准,以获得任意步骤预测的MAE $。
translated by 谷歌翻译
传染病仍然是全世界人类疾病和死亡的主要因素之一,其中许多疾病引起了流行的感染波。特定药物和预防疫苗防止大多数流行病的不可用,这使情况变得更糟。这些迫使公共卫生官员,卫生保健提供者和政策制定者依靠由流行病的可靠预测产生的预警系统。对流行病的准确预测可以帮助利益相关者调整对手的对策,例如疫苗接种运动,人员安排和资源分配,以减少手头的情况,这可以转化为减少疾病影响的影响。不幸的是,大多数过去的流行病(例如,登革热,疟疾,肝炎,流感和最新的Covid-19)表现出非线性和非平稳性特征,这是由于它们基于季节性依赖性变化以及这些流行病的性质的扩散波动而引起的。 。我们使用基于最大的重叠离散小波变换(MODWT)自动回归神经网络分析了各种流行时期时间序列数据集,并将其称为EWNET。 MODWT技术有效地表征了流行时间序列中的非平稳行为和季节性依赖性,并在拟议的集合小波网络框架中改善了自回旋神经网络的预测方案。从非线性时间序列的角度来看,我们探讨了所提出的EWNET模型的渐近平稳性,以显示相关的马尔可夫链的渐近行为。我们还理论上还研究了学习稳定性的效果以及在拟议的EWNET模型中选择隐藏的神经元的选择。从实际的角度来看,我们将我们提出的EWNET框架与以前用于流行病预测的几种统计,机器学习和深度学习模型进行了比较。
translated by 谷歌翻译
随着数据的不断增加,将现代机器学习方法应用于建模和控制等领域的兴趣爆炸。但是,尽管这种黑盒模型具有灵活性和令人惊讶的准确性,但仍然很难信任它们。结合两种方法的最新努力旨在开发灵活的模型,这些模型仍然可以很好地推广。我们称为混合分析和建模(HAM)的范式。在这项工作中,我们调查了使用数据驱动模型纠正基于错误的物理模型的纠正源术语方法(COSTA)。这使我们能够开发出可以进行准确预测的模型,即使问题的基本物理学尚未得到充分理解。我们将Costa应用于铝电解电池中的Hall-H \'Eroult工艺。我们证明该方法提高了准确性和预测稳定性,从而产生了总体可信赖的模型。
translated by 谷歌翻译
Dengue fever is a virulent disease spreading over 100 tropical and subtropical countries in Africa, the Americas, and Asia. This arboviral disease affects around 400 million people globally, severely distressing the healthcare systems. The unavailability of a specific drug and ready-to-use vaccine makes the situation worse. Hence, policymakers must rely on early warning systems to control intervention-related decisions. Forecasts routinely provide critical information for dangerous epidemic events. However, the available forecasting models (e.g., weather-driven mechanistic, statistical time series, and machine learning models) lack a clear understanding of different components to improve prediction accuracy and often provide unstable and unreliable forecasts. This study proposes an ensemble wavelet neural network with exogenous factor(s) (XEWNet) model that can produce reliable estimates for dengue outbreak prediction for three geographical regions, namely San Juan, Iquitos, and Ahmedabad. The proposed XEWNet model is flexible and can easily incorporate exogenous climate variable(s) confirmed by statistical causality tests in its scalable framework. The proposed model is an integrated approach that uses wavelet transformation into an ensemble neural network framework that helps in generating more reliable long-term forecasts. The proposed XEWNet allows complex non-linear relationships between the dengue incidence cases and rainfall; however, mathematically interpretable, fast in execution, and easily comprehensible. The proposal's competitiveness is measured using computational experiments based on various statistical metrics and several statistical comparison tests. In comparison with statistical, machine learning, and deep learning methods, our proposed XEWNet performs better in 75% of the cases for short-term and long-term forecasting of dengue incidence.
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
科学和工程学中的一个基本问题是设计最佳的控制政策,这些政策将给定的系统转向预期的结果。这项工作提出了同时求解给定系统状态和最佳控制信号的控制物理信息的神经网络(控制PINNS),在符合基础物理定律的一个阶段框架中。先前的方法使用两个阶段的框架,该框架首先建模然后按顺序控制系统。相比之下,控制PINN将所需的最佳条件纳入其体系结构和损耗函数中。通过解决以下开环的最佳控制问题来证明控制PINN的成功:(i)一个分析问题,(ii)一维热方程,以及(iii)二维捕食者捕食者问题。
translated by 谷歌翻译
差分方程管理的学习动态对于预测和控制科学和工程系统来说至关重要。神经常规方程(节点)是一种与微分方程集成的深度学习模型,最近是由于其对不规则样本的鲁棒性及其对高维输入的灵活性而流行的学习动态。然而,节点的训练对数值求解器的精度敏感,这使得节点的收敛不稳定,特别是对于不稳定的动态系统。在本文中,为了减少对数值求解器的依赖,我们建议提高节点训练中的监督信号。具体地,我们预先训练神经差分运算符(NDO)以输出衍生物的估计用作额外的监督信号。 NDO在一类基础函数上预先培训,并将这些功能的轨迹样本之间的映射学习到其衍生物。为了利用来自NDO的轨迹信号和估计的衍生工具,我们提出了一种称为NDO-Node的算法,其中损耗函数包含两个术语:真正轨迹样本的适应性以及由输出的估计衍生物的适应度预先训练的NDO。各种动力学的实验表明,我们提出的NDO-Node可以一致地用一个预先训练的NDO来改善预测精度。特别是对于僵硬的杂散,我们观察到与其他正则化方法相比,NDO-Node可以更准确地捕获动态的过渡。
translated by 谷歌翻译
当通过差异模型研究流行动力学时,要了解现象并模拟预测场景所需的参数需要微妙的校准阶段,通常会因官方来源报告的稀缺性和不确定性而变得更加挑战。在这种情况下,通过嵌入控制物理现象在学习过程中的差异模型的知识,可以有效解决数据驱动的学习的逆问题,并解决相应的流行病问题,从而使物理知识的神经网络(PINN)(PINN)(PINN)(PINNS)。 。然而,在许多情况下,传染病的空间传播的特征是在多尺度PDE的不同尺度上的个体运动。这反映了与城市和邻近区域内动态有关的区域或领域的异质性。在存在多个量表的情况下,PINN的直接应用通常会导致由于神经网络损失函数中差异模型的多尺度性质而导致的结果差。为了使神经网络相对于小规模统一运行,希望神经网络满足学习过程中的渐近保护(AP)特性。为此,我们考虑了一类新的AP神经网络(APNNS),用于多尺度双曲线传输模型的流行病扩散模型,由于损失函数的适当配方,它能够在系统的不同尺度上均匀地工作。一系列针对不同流行病的数值测试证实了所提出的方法的有效性,在处理多尺度问题时,突出了AP在神经网络中的重要性,尤其是在存在稀疏和部分观察到的系统的情况下。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
随着现代深层学习技术的快速发展,动态系统和神经网络的研究越来越多地利用了很多不同的方式。由于在现实世界观察中经常出现不确定性,因此SDES(随机微分方程)来发挥重要作用。更具体地,在本文中,我们使用配备神经网络的SDE集合来预测具有大跳跃性能和高概率分布偏移的嘈杂时间序列的长期趋势。我们的贡献是,首先,我们使用相位空间重建方法来提取时间序列数据的内在尺寸,以确定我们预测模型的输入结构。其次,我们探索由$ \ alpha $ -stable l \'evy motion驱动的SDE来模拟时间序列数据,通过神经网络近似来解决问题。第三,我们构建了达到多时间步长预测的注意机制。最后,我们通过将其应用于股票营销时间序列预测并显示结果优于几个基线深度学习模型来说明我们的方法。
translated by 谷歌翻译
这项工作探讨了物理驱动的机器学习技术运算符推理(IMIPF),以预测混乱的动力系统状态。 OPINF提供了一种非侵入性方法来推断缩小空间中多项式操作员的近似值,而无需访问离散模型中出现的完整订单操作员。物理系统的数据集是使用常规数值求解器生成的,然后通过主成分分析(PCA)投影到低维空间。在潜在空间中,设置了一个最小二乘问题以适合二次多项式操作员,该操作员随后在时间整合方案中使用,以便在同一空间中产生外推。解决后,将对逆PCA操作进行重建原始空间中的外推。通过标准化的根平方误差(NRMSE)度量评估了OPINF预测的质量,从中计算有效的预测时间(VPT)。考虑混乱系统Lorenz 96和Kuramoto-Sivashinsky方程的数值实验显示,具有VPT范围的OPINF降低订单模型的有希望的预测能力,这些模型均超过了最先进的机器学习方法,例如返回和储层计算循环新的Neural网络[1 ],以及马尔可夫神经操作员[2]。
translated by 谷歌翻译
在本文中,我们提出了一种深度学习技术,用于数据驱动的流体介质中波传播的预测。该技术依赖于基于注意力的卷积复发自动编码器网络(AB-CRAN)。为了构建波传播数据的低维表示,我们采用了基于转化的卷积自动编码器。具有基于注意力的长期短期记忆细胞的AB-CRAN体系结构构成了我们的深度神经网络模型,用于游行低维特征的时间。我们评估了针对标准复发性神经网络的拟议的AB-Cran框架,用于波传播的低维学习。为了证明AB-Cran模型的有效性,我们考虑了三个基准问题,即一维线性对流,非线性粘性汉堡方程和二维圣人浅水系统。我们的新型AB-CRAN结构使用基准问题的空间 - 时空数据集,可以准确捕获波幅度,并在长期范围内保留溶液的波特性。与具有长期短期记忆细胞的标准复发性神经网络相比,基于注意力的序列到序列网络增加了预测的时间莫。 Denoising自动编码器进一步减少了预测的平方平方误差,并提高了参数空间中的概括能力。
translated by 谷歌翻译
使用变压器的深度学习最近在许多重要领域取得了很大的成功,例如自然语言处理,计算机视觉,异常检测和推荐系统等。在变压器的几种优点中,对于时间序列预测,捕获远程时间依赖性和相互作用的能力是可取的,从而导致其在各种时间序列应用中的进步。在本文中,我们为非平稳时间序列构建了变压器模型。这个问题具有挑战性,但至关重要。我们为基于小波的变压器编码器体系结构提供了一个新颖的单变量时间序列表示学习框架,并将其称为W-Transformer。所提出的W-Transformer使用最大重叠离散小波转换(MODWT)到时间序列数据,并在分解数据集上构建本地变压器,以生动地捕获时间序列中的非机构性和远程非线性依赖性。在来自各个领域的几个公共基准时间序列数据集和具有不同特征的几个公开基准时间序列数据集上评估我们的框架,我们证明它的平均表现明显优于短期和长期预测的基线预报器,即使是由包含的数据集组成的数据集只有几百个培训样本。
translated by 谷歌翻译
Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and representative of a wide range of problems. We introduce PDEBench, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBench comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems contribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more realistic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of initial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method). PDEBench allows researchers to extend the benchmark freely for their own purposes using a standardized API and to compare the performance of new models to existing baseline methods. We also propose new evaluation metrics with the aim to provide a more holistic understanding of learning methods in the context of Scientific ML. With those metrics we identify tasks which are challenging for recent ML methods and propose these tasks as future challenges for the community. The code is available at https://github.com/pdebench/PDEBench.
translated by 谷歌翻译