动态极化控制(DPC)对许多光学应用都是有益的。它使用可调节的波形来执行自动极化跟踪和操作。有效的算法对于在高速下实现无尽的极化控制过程至关重要。但是,基于标准梯度的算法尚未很好地分析。在这里,我们用基于雅各布的控制理论框架对DPC进行建模,该框架与机器人运动学有很多共同点。然后,我们将Stokes矢量梯度的状况作为Jacobian矩阵进行详细分析。我们将多阶段DPC识别为冗余系统,启用具有空空间操作的控制算法。可以找到一种有效的,无复位的算法。我们预计更多定制的DPC算法将在各种光学系统中遵循相同的框架。
translated by 谷歌翻译
This is a follow-up tutorial article of our previous article entitled "Robot Basics: Representation, Rotation and Velocity". For better understanding of the topics covered in this articles, we recommend the readers to first read our previous tutorial article on robot basics. Specifically, in this article, we will cover some more advanced topics on robot kinematics, including robot motion, forward kinematics, inverse kinematics, and robot dynamics. For the topics, terminologies and notations introduced in the previous article, we will use them directly without re-introducing them again in this article. Also similar to the previous article, math and formulas will also be heavily used in this article as well (hope the readers are well prepared for the upcoming math bomb). After reading this article, readers should be able to have a deeper understanding about how robot motion, kinematics and dynamics. As to some more advanced topics about robot control, we will introduce them in the following tutorial articles for readers instead.
translated by 谷歌翻译
Inverse kinematics of many common types of robot manipulators may be decomposed into canonical subproblems. This paper presents new solution methods to six subproblems using a linear algebra approach. The first three subproblems, called the Paden-Kahan subproblems, are Subproblem 1: angle between a vector on the edge of a cone and a point, Subproblem 2: intersections between two cones, and Subproblem 3: intersections between a cone and a sphere. The other three subproblems, which have not been extensively covered in the literature, are Subproblem 4: intersections between a cone and a plane, Subproblem 5: intersections among three cones, and Subproblem 6: intersections in a system of four cones. We present algebraic solutions and geometric interpretations for each subproblem and provide computational performance comparisons. Our approach also finds the least-squares solutions for Subproblems 1-4 when the exact solution does not exist. We show that almost all 6-dof all revolute (6R) robots with known closed-form solutions may be solved using the subproblem decomposition method. For a general 6R robot, subproblem decomposition reduces finding all solutions to a search on a circle or a 2D torus. The software code is available on a publicly accessible repository.
translated by 谷歌翻译
操纵器运动学与操纵器中每个链路的运动有关,而无需考虑质量或力。在本文中,这是两部分教程中的第一个,我们使用基本变换序列(ETS)为建模操纵器运动学提供了介绍。然后,我们制定了一阶差异运动学,该运动学导致操纵器雅各布式,这是速度控制和逆运动学的基础。我们描述了基本的古典技术,这些技术在展示一些当代应用之前依赖于操纵器Jacobian。本教程的第二部分提供了第二和高阶差异运动学的配方,介绍了操纵器Hessian,并说明了先进的技术,其中一些提高了第一部分中所示的技术的性能本教程。这些笔记本是用Python代码编写的,并使用python的机器人工具箱,以及Swift Simulator提供算法的示例和实现。虽然不是绝对必要的,但对于最吸引人和信息丰富的经验,我们建议在阅读本文时使用Jupyter笔记本。笔记本和设置说明可以在https://github.com/jhavl/dkt上访问。
translated by 谷歌翻译
这是关于操纵器差异运动学教程的第二篇也是最后一篇文章。在第一部分中,我们描述了一种使用基本变换序列(ET)建模运动学的方法,然后在制定前向运动学和操纵器Jacobian之前。然后,我们描述了操纵器Jacobian的一些基本应用,包括分辨率运动控制(RRMC),逆运动学(IK)和一些操纵器性能指标。在本文中,我们制定了二阶差异运动学,从而定义了操纵器Hessian。然后,我们描述了差异运动学的分析形式,这对于动态应用至关重要。随后,我们为高阶导数提供了一般公式。我们考虑的第一个应用程序是高级速度控制。在本节中,我们将解决的速率运动控制扩展到执行子任务,同时仍然实现目标,然后重新定义算法作为二次程序,以实现更大的灵活性和其他约束。然后,我们再次看一下数值逆运动学,重点是增加约束。最后,我们分析了操纵者黑森州如何帮助逃脱奇异性。我们提供了Jupyter笔记本,以陪同本教程中的每个部分。这些笔记本是用Python代码编写的,并使用python的机器人工具箱,以及Swift Simulator提供算法的示例和实现。虽然不是绝对必要的,但对于最吸引人和信息丰富的经验,我们建议在阅读本文时使用Jupyter笔记本。笔记本和设置说明可以在https://github.com/jhavl/dkt上访问。
translated by 谷歌翻译
机器人社区在为软机器人设备建模提供的理论工具的复杂程度中看到了指数增长。已经提出了不同的解决方案以克服与软机器人建模相关的困难,通常利用其他科学学科,例如连续式机械和计算机图形。这些理论基础通常被认为是理所当然的,这导致复杂的文献,因此,从未得到完整审查的主题。Withing这种情况下,提交的文件的目标是双重的。突出显示涉及建模技术的不同系列的常见理论根源,采用统一语言,以简化其主要连接和差异的分析。因此,对上市接近自然如下,并最终提供在该领域的主要作品的完整,解开,审查。
translated by 谷歌翻译
本文采取了一步,为人形机器人提供自适应形态能力。我们提出了一种系统的方法,可以使机器人盖变形其形状,其整体尺寸适合人体机器人的人体测量值。更确切地说,我们提出了一个封面概念,该概念由两个主要组成部分组成:骨骼,这是一个称为Node的基本元素和一个软膜的重复,该元素将盖子包裹起来并用其运动构成变形。本文重点关注盖子骨骼,并解决了节点设计,系统建模,电动机定位以及变形系统的控制设计的挑战性问题。封面建模侧重于运动学,并提出了定义系统运动限制的系统方法。然后,我们应用遗传算法来找到运动位置,以使变形盖完全致动。最后,我们提出了控制算法,使覆盖物变为随时间变化的形状。通过进行四个不同的方尺寸盖,分别具有3x3、4x8、8x8和20x20节点的运动学模拟来验证整个方法。对于每个封面,我们应用遗传算法来选择运动位置并执行模拟以跟踪所需形状。仿真结果表明,提出的方法可确保封面跟踪具有良好跟踪性能的所需形状。
translated by 谷歌翻译
This work proposes a novel singularity avoidance approach for real-time trajectory optimization based on known singular configurations. The focus of this work lies on analyzing kinematically singular configurations for three robots with different kinematic structures, i.e., the Comau Racer 7-1.4, the KUKA LBR iiwa R820, and the Franka Emika Panda, and exploiting these configurations in form of tailored potential functions for singularity avoidance. Monte Carlo simulations of the proposed method and the commonly used manipulability maximization approach are performed for comparison. The numerical results show that the average computing time can be reduced and shorter trajectories in both time and path length are obtained with the proposed approach
translated by 谷歌翻译
In this article, we plan to provide an introduction about some basics about robots for readers. Several key topics of classic robotics will be introduced, including robot representation, robot rotational motion, coordinates transformation and velocity transformation. By now, classic rigid-body robot analysis is still the main-stream approach in robot controlling and motion planning. In this article, no data-driven or machine learning based methods will be introduced. Most of the materials covered in this article are based on the rigid-body kinematics that the readers probably have learned from the physics course at high-school or college. Meanwhile, these classic robot kinematics analyses will serve as the foundation for the latest intelligent robot control algorithms in modern robotics studies.
translated by 谷歌翻译
空中操纵器(AM)表现出特别具有挑战性的非线性动力学;无人机和操纵器携带的是一个紧密耦合的动态系统,相互影响。描述这些动力学的数学模型构成了非线性控制和深度强化学习中许多解决方案的核心。传统上,动力学的配方涉及在拉格朗日框架中的欧拉角参数化或牛顿 - 欧拉框架中的四元素参数化。前者的缺点是诞生奇异性,而后者在算法上是复杂的。这项工作提出了一个混合解决方案,结合了两者的好处,即利用拉格朗日框架的四元化方法,将无奇异参数化与拉格朗日方法的算法简单性联系起来。我们通过提供有关运动学建模过程的详细见解以及一般空中操纵器动力学的表述。获得的动力学模型对实时物理引擎进行了实验验证。获得的动力学模型的实际应用显示在计算的扭矩反馈控制器(反馈线性化)的上下文中,我们通过日益复杂的模型分析其实时功能。
translated by 谷歌翻译
Many problems in robotics are fundamentally problems of geometry, which lead to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra and dual quaternions. A unification and generalization of these popular formalisms can be found in geometric algebra. The aim of this paper is to showcase the capabilities of geometric algebra when applied to robot manipulation tasks. In particular the modelling of cost functions for optimal control can be done uniformly across different geometric primitives leading to a low symbolic complexity of the resulting expressions and a geometric intuitiveness. We demonstrate the usefulness, simplicity and computational efficiency of geometric algebra in several experiments using a Franka Emika robot. The presented algorithms were implemented in c++20 and resulted in the publicly available library \textit{gafro}. The benchmark shows faster computation of the kinematics than state-of-the-art robotics libraries.
translated by 谷歌翻译
Energy based control methods are at the core of modern robotic control algorithms. In this paper we present a general approach to virtual model/mechanism control, which is a powerful design tool to create energy based controllers. We present two novel virtual-mechanisms designed for robotic minimally invasive surgery, which control the position of a surgical instrument while passing through an incision. To these virtual mechanisms we apply the parameter tuning method of Larby and Forni 2022, which optimizes for local performance while ensuring global stability.
translated by 谷歌翻译
中枢神经系统(CNS)利用预期(APA)和补偿性(CPA)的姿势调整以保持平衡。姿势调整包括质量中心的稳定性(COM)(COM)和身体的压力分布相互影响,如果存在他们俩缺乏表现。任何可预测的或突然的扰动都可能为COM与平衡和身体的均匀压力分布的分歧铺平道路。由于其不良的APA和CPA,并引起了它们的跌倒。神经系统患者跌倒风险的最小化方法正在利用基于扰动的康复,因为它有效地恢复了平衡障碍。根据发现的结果,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现是有效的。介绍新型3 DOF平行操纵器的设计,实现和实验评估,以治疗M. M.的平衡障碍,机器人平台允许角运动脚踝基于其拟人化的自由。赋予上下平台的最终效应分别旨在评估每只脚的压力分布和身体的com。在机器人平台的高级控制中,用于调节任务的难度水平。在这项研究中,在模拟环境中得出并验证了机器人的运动学和动态分析。还通过PID控制器成功实现了对原型的低级控制。每个平台的容量都通过一组实验来评估,考虑评估最终效应器上的脚注和类似对象的压力分布和COM。实验结果表明,这样的系统井井有条,需要通过APA和CPA进行平衡技能培训和评估。
translated by 谷歌翻译
解决逆运动学问题是针对清晰机器人的运动计划,控制和校准的基本挑战。这些机器人的运动学模型通常通过关节角度进行参数化,从而在机器人构型和最终效果姿势之间产生复杂的映射。或者,可以使用机器人附加点之间的不变距离来表示运动学模型和任务约束。在本文中,我们将基于距离的逆运动学的等效性和大量铰接式机器人和任务约束的距离几何问题进行形式化。与以前的方法不同,我们使用距离几何形状和低级别矩阵完成之间的连接来通过局部优化完成部分欧几里得距离矩阵来找到逆运动学解决方案。此外,我们用固定级革兰氏矩阵的Riemannian歧管来参数欧几里得距离矩阵的空间,从而使我们能够利用各种成熟的Riemannian优化方法。最后,我们表明,绑定的平滑性可用于生成知情的初始化,而无需大量的计算开销,从而改善收敛性。我们证明,我们的逆运动求解器比传统技术获得更高的成功率,并且在涉及许多工作区约束的问题上大大优于它们。
translated by 谷歌翻译
The increasing interest in autonomous robots with a high number of degrees of freedom for industrial applications and service robotics demands control algorithms to handle multiple tasks as well as hard constraints efficiently. This paper presents a general framework in which both kinematic (velocity- or acceleration-based) and dynamic (torque-based) control of redundant robots are handled in a unified fashion. The framework allows for the specification of redundancy resolution problems featuring a hierarchy of arbitrary (equality and inequality) constraints, arbitrary weighting of the control effort in the cost function and an additional input used to optimize possibly remaining redundancy. To solve such problems, a generalization of the Saturation in the Null Space (SNS) algorithm is introduced, which extends the original method according to the features required by our general control framework. Variants of the developed algorithm are presented, which ensure both efficient computation and optimality of the solution. Experiments on a KUKA LBRiiwa robotic arm, as well as simulations with a highly redundant mobile manipulator are reported.
translated by 谷歌翻译
近二十年来,软机器人技术一直是机器人社区中的一个热门话题。但是,对于软机器人进行建模和分析的可用工具仍然有限。本文介绍了一个用户友好的MATLAB工具箱Soft Robot Simulator(Sorosim),该工具集合了Cosserat杆的几何变量应变(GVS)模型,以促进对软,刚性或混合机器人系统的静态和动力分析。我们简要概述了工具箱的设计和结构,并通过将其结果与文献中发布的结果进行比较。为了突出该工具箱有效建模,模拟,优化和控制各种机器人系统的潜力,我们演示了四个示例应用程序。所示的应用探索了单,分支,开放式和闭合链机器人系统的不同执行器和外部加载条件。我们认为,软机器人研究社区将从Sorosim工具箱中大大受益,用于多种应用。
translated by 谷歌翻译
受约束运动控制的最新进展使其成为在具有挑战性的任务中使用任意几何形状控制机器人的有吸引力的策略。当前大多数作品都假定机器人运动模型足够精确,可以完成手头的任务。但是,随着机器人应用的需求和安全要求的增加,需要在线补偿运动学不准确的控制器。我们提出了基于二次编程的自适应约束运动控制策略,该策略使用部分或完整的任务空间测量来补偿在线校准错误。与最先进的运动学控制策略相比,我们的方法在实验中得到了验证。
translated by 谷歌翻译
With the development of experimental quantum technology, quantum control has attracted increasing attention due to the realization of controllable artificial quantum systems. However, because quantum-mechanical systems are often too difficult to analytically deal with, heuristic strategies and numerical algorithms which search for proper control protocols are adopted, and, deep learning, especially deep reinforcement learning (RL), is a promising generic candidate solution for the control problems. Although there have been a few successful applications of deep RL to quantum control problems, most of the existing RL algorithms suffer from instabilities and unsatisfactory reproducibility, and require a large amount of fine-tuning and a large computational budget, both of which limit their applicability. To resolve the issue of instabilities, in this dissertation, we investigate the non-convergence issue of Q-learning. Then, we investigate the weakness of existing convergent approaches that have been proposed, and we develop a new convergent Q-learning algorithm, which we call the convergent deep Q network (C-DQN) algorithm, as an alternative to the conventional deep Q network (DQN) algorithm. We prove the convergence of C-DQN and apply it to the Atari 2600 benchmark. We show that when DQN fail, C-DQN still learns successfully. Then, we apply the algorithm to the measurement-feedback cooling problems of a quantum quartic oscillator and a trapped quantum rigid body. We establish the physical models and analyse their properties, and we show that although both C-DQN and DQN can learn to cool the systems, C-DQN tends to behave more stably, and when DQN suffers from instabilities, C-DQN can achieve a better performance. As the performance of DQN can have a large variance and lack consistency, C-DQN can be a better choice for researches on complicated control problems.
translated by 谷歌翻译
Solving the analytical inverse kinematics (IK) of redundant manipulators in real time is a difficult problem in robotics since its solution for a given target pose is not unique. Moreover, choosing the optimal IK solution with respect to application-specific demands helps to improve the robustness and to increase the success rate when driving the manipulator from its current configuration towards a desired pose. This is necessary, especially in high-dynamic tasks like catching objects in mid-flights. To compute a suitable target configuration in the joint space for a given target pose in the trajectory planning context, various factors such as travel time or manipulability must be considered. However, these factors increase the complexity of the overall problem which impedes real-time implementation. In this paper, a real-time framework to compute the analytical inverse kinematics of a redundant robot is presented. To this end, the analytical IK of the redundant manipulator is parameterized by so-called redundancy parameters, which are combined with a target pose to yield a unique IK solution. Most existing works in the literature either try to approximate the direct mapping from the desired pose of the manipulator to the solution of the IK or cluster the entire workspace to find IK solutions. In contrast, the proposed framework directly learns these redundancy parameters by using a neural network (NN) that provides the optimal IK solution with respect to the manipulability and the closeness to the current robot configuration. Monte Carlo simulations show the effectiveness of the proposed approach which is accurate and real-time capable ($\approx$ \SI{32}{\micro\second}) on the KUKA LBR iiwa 14 R820.
translated by 谷歌翻译
Soft robots are interesting examples of hyper-redundancy in robotics, however, the nonlinear continuous dynamics of these robots and the use of hyper-elastic and visco-elastic materials makes modeling of these robots more complicated. This study presents a geometric Inverse Kinematic (IK) model for trajectory tracking of multi-segment extensible soft robots, where, each segment of the soft actuator is geometrically approximated with multiple rigid links connected with rotary and prismatic joints. Using optimization methods, the desired configuration variables of the soft actuator for the desired end-effector positions are obtained. Also, the redundancy of the robot is applied for second task applications, such as tip angle control. The model's performance is investigated through simulations, numerical benchmarks, and experimental validations and results show lower computational costs and higher accuracy compared to most existing methods. The method is easy to apply to multi segment soft robots, both in 2D and 3D. As a case study, a fully 3D-printed soft robot manipulator is tested using a control unit and the model predictions show good agreement with the experimental results.
translated by 谷歌翻译