本文采取了一步,为人形机器人提供自适应形态能力。我们提出了一种系统的方法,可以使机器人盖变形其形状,其整体尺寸适合人体机器人的人体测量值。更确切地说,我们提出了一个封面概念,该概念由两个主要组成部分组成:骨骼,这是一个称为Node的基本元素和一个软膜的重复,该元素将盖子包裹起来并用其运动构成变形。本文重点关注盖子骨骼,并解决了节点设计,系统建模,电动机定位以及变形系统的控制设计的挑战性问题。封面建模侧重于运动学,并提出了定义系统运动限制的系统方法。然后,我们应用遗传算法来找到运动位置,以使变形盖完全致动。最后,我们提出了控制算法,使覆盖物变为随时间变化的形状。通过进行四个不同的方尺寸盖,分别具有3x3、4x8、8x8和20x20节点的运动学模拟来验证整个方法。对于每个封面,我们应用遗传算法来选择运动位置并执行模拟以跟踪所需形状。仿真结果表明,提出的方法可确保封面跟踪具有良好跟踪性能的所需形状。
translated by 谷歌翻译
机器人社区在为软机器人设备建模提供的理论工具的复杂程度中看到了指数增长。已经提出了不同的解决方案以克服与软机器人建模相关的困难,通常利用其他科学学科,例如连续式机械和计算机图形。这些理论基础通常被认为是理所当然的,这导致复杂的文献,因此,从未得到完整审查的主题。Withing这种情况下,提交的文件的目标是双重的。突出显示涉及建模技术的不同系列的常见理论根源,采用统一语言,以简化其主要连接和差异的分析。因此,对上市接近自然如下,并最终提供在该领域的主要作品的完整,解开,审查。
translated by 谷歌翻译
近二十年来,软机器人技术一直是机器人社区中的一个热门话题。但是,对于软机器人进行建模和分析的可用工具仍然有限。本文介绍了一个用户友好的MATLAB工具箱Soft Robot Simulator(Sorosim),该工具集合了Cosserat杆的几何变量应变(GVS)模型,以促进对软,刚性或混合机器人系统的静态和动力分析。我们简要概述了工具箱的设计和结构,并通过将其结果与文献中发布的结果进行比较。为了突出该工具箱有效建模,模拟,优化和控制各种机器人系统的潜力,我们演示了四个示例应用程序。所示的应用探索了单,分支,开放式和闭合链机器人系统的不同执行器和外部加载条件。我们认为,软机器人研究社区将从Sorosim工具箱中大大受益,用于多种应用。
translated by 谷歌翻译
跳跃可能是克服小地形差距或障碍的有效运动方法。在本文中,我们提出了两种不同的方法,可以用类人形机器人进行跳跃。具体而言,从预定义的COM轨迹开始,我们开发了速度控制器的理论和基于优化技术评估关节输入的优化技术的扭矩控制器。在模拟和类人形机器人ICUB中,对控制器进行了测试。在模拟中,机器人能够使用两个控制器跳跃,而实际系统仅使用速度控制器跳跃。结果突出了控制质心动量的重要性,他们表明联合性能,即腿部和躯干关节的最大功率,以及低水平的控制性能是至关重要的,以实现可接受的结果。
translated by 谷歌翻译
该论文提出了一个计划者,以使用质心动力学和人形机器人的完整运动学来产生步行轨迹。机器人与行走表面之间的相互作用是通过新条件明确建模的,即\ emph {动态互补性约束}。该方法不需要预定义的接触序列,并自动生成脚步。我们通过一组任务来表征机器人控制目标,并通过解决最佳控制问题来解决它。我们表明,可以通过指定最小的参考集,例如恒定所需的质量速度中心和地面上的参考点来自动实现行走运动。此外,我们分析了接触模型选择如何影响计算时间。我们通过为人形机器人ICUB生成和测试步行轨迹来验证该方法。
translated by 谷歌翻译
空中操纵器(AM)表现出特别具有挑战性的非线性动力学;无人机和操纵器携带的是一个紧密耦合的动态系统,相互影响。描述这些动力学的数学模型构成了非线性控制和深度强化学习中许多解决方案的核心。传统上,动力学的配方涉及在拉格朗日框架中的欧拉角参数化或牛顿 - 欧拉框架中的四元素参数化。前者的缺点是诞生奇异性,而后者在算法上是复杂的。这项工作提出了一个混合解决方案,结合了两者的好处,即利用拉格朗日框架的四元化方法,将无奇异参数化与拉格朗日方法的算法简单性联系起来。我们通过提供有关运动学建模过程的详细见解以及一般空中操纵器动力学的表述。获得的动力学模型对实时物理引擎进行了实验验证。获得的动力学模型的实际应用显示在计算的扭矩反馈控制器(反馈线性化)的上下文中,我们通过日益复杂的模型分析其实时功能。
translated by 谷歌翻译
This paper considers a combination of actuation tendons and measurement strings to achieve accurate shape sensing and direct kinematics of continuum robots. Assuming general string routing, a methodical Lie group formulation for the shape sensing of these robots is presented. The shape kinematics is expressed using arc-length-dependent curvature distributions parameterized by modal functions, and the Magnus expansion for Lie group integration is used to express the shape as a product of exponentials. The tendon and string length kinematic constraints are solved for the modal coefficients and the configuration space and body Jacobian are derived. The noise amplification index for the shape reconstruction problem is defined and used for optimizing the string/tendon routing paths, and a planar simulation study shows the minimal number of strings/tendons needed for accurate shape reconstruction. A torsionally stiff continuum segment is used for experimental evaluation, demonstrating mean (maximal) end-effector absolute position error of less than 2% (5%) of total length. Finally, a simulation study of a torsionally compliant segment demonstrates the approach for general deflections and string routings. We believe that the methods of this paper can benefit the design process, sensing and control of continuum and soft robots.
translated by 谷歌翻译
在人类机器人的相互作用中,眼球运动在非语言交流中起着重要作用。但是,控制机器人眼的动作表现出与人眼动物系统相似的性能仍然是一个重大挑战。在本文中,我们研究了如何使用电缆驱动的驱动系统来控制人眼的现实模型,该系统模仿了六个眼外肌肉的自由度。仿生设计引入了解决新的挑战,最值得注意的是,需要控制每种肌肉的支撑,以防止运动过程中的紧张感损失,这将导致电缆松弛和缺乏控制。我们构建了一个机器人原型,并开发了一个非线性模拟器和两个控制器。在第一种方法中,我们使用局部衍生技术线性化了非线性模型,并设计了线性 - 季度最佳控制器,以优化计算准确性,能量消耗和运动持续时间的成本函数。第二种方法使用复发性神经网络,该神经网络从系统的样本轨迹中学习非线性系统动力学,以及一个非线性轨迹优化求解器,可最大程度地减少相似的成本函数。我们专注于具有完全不受限制的运动学的快速saccadic眼球运动,以及六根电缆的控制信号的生成,这些电缆同时满足了几个动态优化标准。该模型忠实地模仿了人类扫视观察到的三维旋转运动学和动力学。我们的实验结果表明,尽管两种方法都产生了相似的结果,但非线性方法对于未来改进该模型的方法更加灵活,该模型的计算是线性化模型的位置依赖性偏向和局部衍生物的计算变得特别乏味。
translated by 谷歌翻译
研究界,工业和社会中地面移动机器人(MRS)和无人机(UAV)的重要性正在迅速发展。如今,这些代理中的许多代理都配备了通信系统,在某些情况下,对于成功完成某些任务至关重要。在这种情况下,我们已经开始见证在机器人技术和通信的交集中开发一个新的跨学科研究领域。该研究领域的意图是将无人机集成到5G和6G通信网络中。这项研究无疑将在不久的将来导致许多重要的应用。然而,该研究领域发展的主要障碍之一是,大多数研究人员通过过度简化机器人技术或通信方面来解决这些问题。这阻碍了达到这个新的跨学科研究领域的全部潜力的能力。在本教程中,我们介绍了一些建模工具,从跨学科的角度来解决涉及机器人技术和通信的问题所需的一些建模工具。作为此类问题的说明性示例,我们将重点放在本教程上,讨论通信感知轨迹计划的问题。
translated by 谷歌翻译
可变形物体的形状控制是一个具有挑战性且重要的机器人问题。本文提出了一个基于模态分析的新型3D全局变形特征的无模型控制器。与使用几何功能的大多数现有控制器不同,我们的控制器通过将3D全局变形将其分解为低频模式形状,采用基于物理的变形功能。尽管模态分析在计算机视觉和仿真中被广泛采用,但尚未用于机器人变形控制中。我们为机器人操纵下的基于模态的变形控制开发了一个新的无模型框架。模式形状的物理解释使我们能够制定一个分析变形雅各布矩阵,将机器人操纵映射到模态特征的变化上。在Jacobian矩阵中,对象的未知几何形状和物理性质被视为低维模态参数,可用于线性地参数化闭环系统。因此,可以设计具有证实稳定性的自适应控制器,以使对象变形,同时在线估计模态参数。模拟和实验是在不同设置下使用线性,平面和实体对象进行的。结果不仅证实了我们的控制器的出色性能,而且还证明了其优势比基线方法。
translated by 谷歌翻译
机器人布操作是自动机器人系统的相关挑战性问题。高度可变形的对象,因为纺织品在操纵过程中可以采用多种配置和形状。因此,机器人不仅应该了解当前的布料配置,还应能够预测布的未来行为。本文通过使用模型预测控制(MPC)策略在对象的其他部分应用动作,从而解决了间接控制纺织对象某些点的配置的问题,该策略还允许间接控制的行为点。设计的控制器找到了最佳控制信号,以实现所需的未来目标配置。本文中的探索场景考虑了通过抓住其上角,以平方布的下角跟踪参考轨迹。为此,我们提出并验证线性布模型,该模型允许实时解决与MPC相关的优化问题。增强学习(RL)技术用于学习所提出的布模型的最佳参数,并调整所得的MPC。在模拟中获得准确的跟踪结果后,在真实的机器人中实现并执行了完整的控制方案,即使在不利条件下也可以获得准确的跟踪。尽管总观察到的误差达到5 cm标记,但对于30x30 cm的布,分析表明,MPC对该值的贡献少于30%。
translated by 谷歌翻译
用无人驾驶飞行器(无人机)的操纵和抓住目前需要准确定位,并且通常以减小的速度执行,以确保成功的掌握。这是由于典型的无人机只能容纳具有少量自由度的刚性机械手,这限制了它们可以补偿由车辆定位误差引起的扰动的能力。此外,无人机必须最小化外部接触力以保持稳定性。另一方面,生物系统利用柔软度来克服类似的限制,并利用遵守来实现积极的抓握。本文调查了软空气机械手的控制和轨迹优化,由四射线和肌腱驱动的软夹持器组成,其中可以充分利用柔软度的优点。据我们所知,这是软操作和UAV控制之间交叉路口的第一个工作。我们介绍了四轮电机和软夹具的解耦方法,组合(i)几何控制器和四峰值(刚性)基础的最小拍摄轨迹优化,(ii)准静态有限元模型和控制空间软夹具的插值。我们证明了尽管添加了软载荷,但几何控制器渐近稳定了四轮流速度和姿态。最后,我们在逼真的软动力学模拟器中评估所提出的系统,并表明:(i)几何控制器对软有效载荷相对不敏感,(ii)尽管定位和初始条件不准确和初始条件,平台可以可靠地掌握未知对象,以及(iii)解耦控制器可用于实时执行。
translated by 谷歌翻译
外部磁场可用于远程控制小尺寸的机器人,使其具有多样化的生物医学和工程应用的候选人。我们表明,我们的磁动毫罗罗布特是高度敏捷的,并且可以执行各种机车任务,例如枢轴行走和在水平面翻滚。在这里,我们专注于控制枢轴行走模式中该毫无米罗罗布特的运动效果。开发了系统的数学模型,派生了运动模型。还研究了机器人运动中扫描和倾斜角度的作用。我们提出了两个控制器来调节枢轴步行者的步态。第一个是比例几何控制器,它决定了Millobot应该使用的正确枢轴点。然后,它基于毫无槌和参考轨迹的中心之间的误差按比例地调节角速度。第二控制器基于梯度下降优化技术,其表示控制动作作为优化问题。这些控制算法使得MilliRobot能够在跟踪所需的轨迹时产生稳定的步态。我们进行一组不同的实验和模拟运行,以确定所提出的控制器在跟踪误差方面的不同扫描和倾斜角度的有效性。这两个控制器表现出适当的性能,但观察到基于梯度下降基于的控制器产生更快的收敛时间,更小的跟踪误差和更少的步数。最后,我们对扫描角度,倾斜角度和步进时间对跟踪误差的影响进行了广泛的实验参数分析。正如我们所预期的那样,基于优化的控制器优于基于几何的控制器。
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译
如果机器人曾经实现与动物所展示的机器人相当的自动运动,则它们必须获得在损害,故障或环境条件下快速恢复运动行为的能力,从而损害了其有效移动的能力。我们提出了一种方法,该方法使我们的机器人和模拟机器人能够在几十次尝试中恢复自由运动行为的高度。我们的方法采用行为规范,以等级的差异约束来表达所需的行为。我们展示了如何通过编码模板来考虑这些约束,从而产生了将先前优化的行为推广到新情况下以快速学习的形式概括的秘诀。我们进一步说明,在数据驱动的上下文中,足够的限制通常很容易确定。作为例证,我们证明了我们在物理7 DOF六型六杆元机器人上的恢复方法,以及对6 DOF 2D运动机制的模拟。在这两种情况下,我们恢复了与先前优化的运动在功能上无法区分的行为。
translated by 谷歌翻译
解决逆运动学问题是针对清晰机器人的运动计划,控制和校准的基本挑战。这些机器人的运动学模型通常通过关节角度进行参数化,从而在机器人构型和最终效果姿势之间产生复杂的映射。或者,可以使用机器人附加点之间的不变距离来表示运动学模型和任务约束。在本文中,我们将基于距离的逆运动学的等效性和大量铰接式机器人和任务约束的距离几何问题进行形式化。与以前的方法不同,我们使用距离几何形状和低级别矩阵完成之间的连接来通过局部优化完成部分欧几里得距离矩阵来找到逆运动学解决方案。此外,我们用固定级革兰氏矩阵的Riemannian歧管来参数欧几里得距离矩阵的空间,从而使我们能够利用各种成熟的Riemannian优化方法。最后,我们表明,绑定的平滑性可用于生成知情的初始化,而无需大量的计算开销,从而改善收敛性。我们证明,我们的逆运动求解器比传统技术获得更高的成功率,并且在涉及许多工作区约束的问题上大大优于它们。
translated by 谷歌翻译
Many problems in robotics are fundamentally problems of geometry, which lead to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra and dual quaternions. A unification and generalization of these popular formalisms can be found in geometric algebra. The aim of this paper is to showcase the capabilities of geometric algebra when applied to robot manipulation tasks. In particular the modelling of cost functions for optimal control can be done uniformly across different geometric primitives leading to a low symbolic complexity of the resulting expressions and a geometric intuitiveness. We demonstrate the usefulness, simplicity and computational efficiency of geometric algebra in several experiments using a Franka Emika robot. The presented algorithms were implemented in c++20 and resulted in the publicly available library \textit{gafro}. The benchmark shows faster computation of the kinematics than state-of-the-art robotics libraries.
translated by 谷歌翻译
Energy based control methods are at the core of modern robotic control algorithms. In this paper we present a general approach to virtual model/mechanism control, which is a powerful design tool to create energy based controllers. We present two novel virtual-mechanisms designed for robotic minimally invasive surgery, which control the position of a surgical instrument while passing through an incision. To these virtual mechanisms we apply the parameter tuning method of Larby and Forni 2022, which optimizes for local performance while ensuring global stability.
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译