外部磁场可用于远程控制小尺寸的机器人,使其具有多样化的生物医学和工程应用的候选人。我们表明,我们的磁动毫罗罗布特是高度敏捷的,并且可以执行各种机车任务,例如枢轴行走和在水平面翻滚。在这里,我们专注于控制枢轴行走模式中该毫无米罗罗布特的运动效果。开发了系统的数学模型,派生了运动模型。还研究了机器人运动中扫描和倾斜角度的作用。我们提出了两个控制器来调节枢轴步行者的步态。第一个是比例几何控制器,它决定了Millobot应该使用的正确枢轴点。然后,它基于毫无槌和参考轨迹的中心之间的误差按比例地调节角速度。第二控制器基于梯度下降优化技术,其表示控制动作作为优化问题。这些控制算法使得MilliRobot能够在跟踪所需的轨迹时产生稳定的步态。我们进行一组不同的实验和模拟运行,以确定所提出的控制器在跟踪误差方面的不同扫描和倾斜角度的有效性。这两个控制器表现出适当的性能,但观察到基于梯度下降基于的控制器产生更快的收敛时间,更小的跟踪误差和更少的步数。最后,我们对扫描角度,倾斜角度和步进时间对跟踪误差的影响进行了广泛的实验参数分析。正如我们所预期的那样,基于优化的控制器优于基于几何的控制器。
translated by 谷歌翻译
小型机器人提供对更大的空间的访问空间。这种类型的访问在药物递送,环境检测和小型样品的集合之类的应用中至关重要。然而,有一些任务是不可能使用包括组装和制造的一个机器人,以小规模,操纵微型和纳米物体,以及基于机器人的小规模材料的结构。解决此问题的解决方案是使用一组机器人作为系统。因此,我们专注于可以使用一组小规模机器人实现的任务。这些机器人通常由于其尺寸限制而外部驱动。然而,一个人面临使用单个全局输入控制一组机器人的挑战。我们提出了一种控制算法,以在预定义位置定位蜂拥的各个成员。单个控制输入适用于系统,并以相同的方向移动所有机器人。我们还通过使用不同的长度机器人添加另一个控制模态。电磁线圈系统施加外力并转向毫流。这个毫米可以以各种运动模式移动,如枢轴行走和翻滚。我们提出了两个毫无罗罗波茨的新设计。在第一设计中,磁体放置在主体的中心以减小磁吸引力。在第二种设计中,毫米的长度相同,具有两条额外的腿作为枢轴点。这样,我们在设计中变化分离时可以利用枢轴行走模式的变速,同时保持翻滚模式的速度恒定。本文介绍了一种具有不同长度的N毫米的位置控制的一般算法,使它们从给定的初始位置移动到最终所需位置。该方法基于选择完全可控的领导者。仿真和硬件实验验证了这些结果。
translated by 谷歌翻译
当球体在平面上遵循直线路径时,本文涉及旋转轧制球体的运动规划。由于球体的运动受到直线的约束,因此球体的旋转运动的控制对于收敛到球体的期望配置是必不可少的。在本文中,我们展示了一种基于新的基于几何的规划方法,其基于该非线性系统的全状态描述。首先,提出了运动规划的问题陈述。接下来,我们通过使用Darboux帧运动学开发作为虚拟表面实现的几何控制器。该虚拟表面产生基于弧长的输入,用于控制球体的轨迹。然后,迭代算法旨在调整所需配置的这些输入。模拟验证了所提出的方法的可行性。
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
This paper presents a state-of-the-art optimal controller for quadruped locomotion. The robot dynamics is represented using a single rigid body (SRB) model. A linear time-varying model predictive controller (LTV MPC) is proposed by using linearization schemes. Simulation results show that the LTV MPC can execute various gaits, such as trot and crawl, and is capable of tracking desired reference trajectories even under unknown external disturbances. The LTV MPC is implemented as a quadratic program using qpOASES through the CasADi interface at 50 Hz. The proposed MPC can reach up to 1 m/s top speed with an acceleration of 0.5 m/s2 executing a trot gait. The implementation is available at https:// github.com/AndrewZheng-1011/Quad_ConvexMPC
translated by 谷歌翻译
Controller design for bipedal walking on dynamic rigid surfaces (DRSes), which are rigid surfaces moving in the inertial frame (e.g., ships and airplanes), remains largely uninvestigated. This paper introduces a hierarchical control approach that achieves stable underactuated bipedal robot walking on a horizontally oscillating DRS. The highest layer of our approach is a real-time motion planner that generates desired global behaviors (i.e., the center of mass trajectories and footstep locations) by stabilizing a reduced-order robot model. One key novelty of this layer is the derivation of the reduced-order model by analytically extending the angular momentum based linear inverted pendulum (ALIP) model from stationary to horizontally moving surfaces. The other novelty is the development of a discrete-time foot-placement controller that exponentially stabilizes the hybrid, linear, time-varying ALIP model. The middle layer of the proposed approach is a walking pattern generator that translates the desired global behaviors into the robot's full-body reference trajectories for all directly actuated degrees of freedom. The lowest layer is an input-output linearizing controller that exponentially tracks those full-body reference trajectories based on the full-order, hybrid, nonlinear robot dynamics. Simulations of planar underactuated bipedal walking on a swaying DRS confirm that the proposed framework ensures the walking stability under different DRS motions and gait types.
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
由于机器人的脚下缺乏致动,全球地位控制是一个挑战性问题。在本文中,我们应用基于混合的倒立摆(H唇)踩踏3D废除后的双模型机器人进行全球位置控制。H-Lip行走的步骤步骤(S2S)动态近似于机器人行走的实际S2S动态,其中步长被认为是输入。因此,基于H唇的反馈控制器大致控制机器人表现得像H唇,它在误差不变集中保持的差异。模型预测控制(MPC)应用于3D中的全球位置控制的H唇。然后,H唇踩踏然后产生用于跟踪机器人的所需步进尺寸。此外,转向行为与步骤规划集成。拟议的框架在与概念验证实验中的模拟中验证了在模拟中的3D欠扰动的双模型机器人Cassie。
translated by 谷歌翻译
虽然在各种应用中广泛使用刚性机器人,但它们在他们可以执行的任务中受到限制,并且在密切的人机交互中可以保持不安全。另一方面,软机器鞋面超越了刚性机器人的能力,例如与工作环境,自由度,自由度,制造成本和与环境安全互动的兼容性。本文研究了纤维增强弹性机壳(释放)作为一种特定类型的软气动致动器的行为,可用于软装饰器。创建动态集参数模型以在各种操作条件下模拟单一免费的运动,并通知控制器的设计。所提出的PID控制器使用旋转角度来控制多项式函数之后的自由到限定的步进输入或轨迹的响应来控制末端执行器的方向。另外,采用有限元分析方法,包括释放的固有非线性材料特性,精确地评估释放的各种参数和配置。该工具还用于确定模块中多个释放的工作空间,这基本上是软机械臂的构建块。
translated by 谷歌翻译
This paper introduces a structure-deformable land-air robot which possesses both excellent ground driving and flying ability, with smooth switching mechanism between two modes. The elaborate coupled dynamics model of the proposed robot is established, including rotors, chassis, especially the deformable structures. Furthermore, taking fusion locomotion and complex near-ground situations into consideration, a model based controller is designed for landing and mode switching under various harsh conditions, in which we realise the cooperation between fused two motion modes. The entire system is implemented in ADAMS/Simulink simulation and in practical. We conduct experiments under various complex scenarios. The results show our robot can accomplish land-air switching swiftly and smoothly, and the designed controller can effectively improve the landing flexibility and reliability.
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
该论文提出了一个计划者,以使用质心动力学和人形机器人的完整运动学来产生步行轨迹。机器人与行走表面之间的相互作用是通过新条件明确建模的,即\ emph {动态互补性约束}。该方法不需要预定义的接触序列,并自动生成脚步。我们通过一组任务来表征机器人控制目标,并通过解决最佳控制问题来解决它。我们表明,可以通过指定最小的参考集,例如恒定所需的质量速度中心和地面上的参考点来自动实现行走运动。此外,我们分析了接触模型选择如何影响计算时间。我们通过为人形机器人ICUB生成和测试步行轨迹来验证该方法。
translated by 谷歌翻译
Snakes and their bio-inspired robot counterparts have demonstrated locomotion on a wide range of terrains. However, dynamic vertical climbing is one locomotion strategy that has received little attention in the existing snake robotics literature. We demonstrate a new scansorial gait and robot inspired by the locomotion of the Pacific Lamprey. This new gait allows a robot to steer while climbing on flat, near-vertical surfaces. A reduced-order model is developed and used to explore the relationship between body actuation and vertical and lateral motions of the robot. Trident, the new wall climbing lamprey-inspired robot, demonstrates dynamic climbing on flat vertical surfaces with a peak net vertical stride displacement of 4.1 cm per step. Actuating at 1.3 Hz, Trident attains a vertical climbing speed of 4.8 cm/s (0.09 Bl/s) at specific resistance of 8.3. Trident can also traverse laterally at 9 cm/s (0.17 Bl/s). Moreover, Trident is able to make 14\% longer strides than the Pacific Lamprey when climbing vertically. The computational and experimental results demonstrate that a lamprey-inspired climbing gait coupled with appropriate attachment is a useful climbing strategy for snake robots climbing near vertical surfaces with limited push points.
translated by 谷歌翻译
本文采取了一步,为人形机器人提供自适应形态能力。我们提出了一种系统的方法,可以使机器人盖变形其形状,其整体尺寸适合人体机器人的人体测量值。更确切地说,我们提出了一个封面概念,该概念由两个主要组成部分组成:骨骼,这是一个称为Node的基本元素和一个软膜的重复,该元素将盖子包裹起来并用其运动构成变形。本文重点关注盖子骨骼,并解决了节点设计,系统建模,电动机定位以及变形系统的控制设计的挑战性问题。封面建模侧重于运动学,并提出了定义系统运动限制的系统方法。然后,我们应用遗传算法来找到运动位置,以使变形盖完全致动。最后,我们提出了控制算法,使覆盖物变为随时间变化的形状。通过进行四个不同的方尺寸盖,分别具有3x3、4x8、8x8和20x20节点的运动学模拟来验证整个方法。对于每个封面,我们应用遗传算法来选择运动位置并执行模拟以跟踪所需形状。仿真结果表明,提出的方法可确保封面跟踪具有良好跟踪性能的所需形状。
translated by 谷歌翻译
Soft robots are interesting examples of hyper-redundancy in robotics, however, the nonlinear continuous dynamics of these robots and the use of hyper-elastic and visco-elastic materials makes modeling of these robots more complicated. This study presents a geometric Inverse Kinematic (IK) model for trajectory tracking of multi-segment extensible soft robots, where, each segment of the soft actuator is geometrically approximated with multiple rigid links connected with rotary and prismatic joints. Using optimization methods, the desired configuration variables of the soft actuator for the desired end-effector positions are obtained. Also, the redundancy of the robot is applied for second task applications, such as tip angle control. The model's performance is investigated through simulations, numerical benchmarks, and experimental validations and results show lower computational costs and higher accuracy compared to most existing methods. The method is easy to apply to multi segment soft robots, both in 2D and 3D. As a case study, a fully 3D-printed soft robot manipulator is tested using a control unit and the model predictions show good agreement with the experimental results.
translated by 谷歌翻译
在许多无人机应用中,为空中机器人计划的时间轨迹至关重要,例如救援任务和包装交付,这些应用程序近年来已经广泛研究。但是,它仍然涉及一些挑战,尤其是在将特殊任务要求纳入计划以及空中机器人的动态方面。在这项工作中,我们研究了一种案例,使空中操纵器应以时间优势的方式从移动的移动机器人中移交一个包裹。我们没有手动设置方法轨迹,这使得很难确定在动态范围内完成所需任务的最佳总行进时间,而是提出了一个优化框架,该框架将离散的力学和互补性约束(DMCC)结合在一起。在提出的框架中,系统动力学受到离散的拉格朗日力学的约束,该机械也根据我们的实验提供了可靠的估计结果。移交机会是根据所需的互补限制自动确定和安排的。最后,通过使用我们的自设计的空中操纵器进行数值模拟和硬件实验来验证所提出的框架的性能。
translated by 谷歌翻译
用于移动操作的机器人平台需要满足许多对许多现实世界应用的两个矛盾要求:需要紧凑的基础才能通过混乱的室内环境导航,而支撑需要足够大以防止翻滚或小费,尤其是在快速操纵期间有效载荷或与环境有力互动的操作。本文提出了一种新颖的机器人设计,该设计通过多功能足迹来满足这两种要求。当操纵重物时,它可以将其足迹重新配置为狭窄的配置。此外,其三角形配置可通过防止支撑开关来在不平坦的地面上进行高精度任务。提出了一种模型预测控制策略,该策略统一计划和控制,以同时导航,重新配置和操纵。它将任务空间目标转换为新机器人的全身运动计划。提出的设计已通过硬件原型进行了广泛的测试。足迹重新配置几乎可以完全消除操纵引起的振动。控制策略在实验室实验和现实世界的施工任务中被证明有效。
translated by 谷歌翻译
开发了一个领导者追随者系统,用于合作运输。据我们所知,这是一个不需要互联通信的第一工作,并且可以实时修改有效载荷的参考轨迹,以便它可以应用于动态变化的环境。为了在无通信条件下实时跟踪修改的参考轨迹,引导跟随系统被认为是非文展系统,其中开发了控制器以实现有效载荷的渐近跟踪。为了消除安装力传感器的需要,开发了UKFS(Unscented Kalman滤波器)以估计领导者和追随者所施加的力量。进行稳定性分析以证明闭环系统的跟踪误差。仿真结果表明跟踪控制器的良好性能。实验表明,领导者的控制器和追随者可以在现实世界中工作,但是跟踪误差受到限制空间中气流的干扰的影响。
translated by 谷歌翻译
本文提出了一项新颖的控制法,以使用尾随机翼无人驾驶飞机(UAV)进行准确跟踪敏捷轨迹,该轨道在垂直起飞和降落(VTOL)和向前飞行之间过渡。全球控制配方可以在整个飞行信封中进行操作,包括与Sideslip的不协调的飞行。显示了具有简化空气动力学模型的非线性尾尾动力学的差异平坦度。使用扁平度变换,提出的控制器结合了位置参考的跟踪及其导数速度,加速度和混蛋以及偏航参考和偏航速率。通过角速度进纸术语包含混蛋和偏航率参考,可以改善随着快速变化的加速度跟踪轨迹。控制器不取决于广泛的空气动力学建模,而是使用增量非线性动态反演(INDI)仅基于局部输入输出关系来计算控制更新,从而导致对简化空气动力学方程中差异的稳健性。非线性输入输出关系的精确反转是通过派生的平坦变换实现的。在飞行测试中对所得的控制算法进行了广泛的评估,在该测试中,它展示了准确的轨迹跟踪和挑战性敏捷操作,例如侧向飞行和转弯时的侵略性过渡。
translated by 谷歌翻译
近二十年来,软机器人技术一直是机器人社区中的一个热门话题。但是,对于软机器人进行建模和分析的可用工具仍然有限。本文介绍了一个用户友好的MATLAB工具箱Soft Robot Simulator(Sorosim),该工具集合了Cosserat杆的几何变量应变(GVS)模型,以促进对软,刚性或混合机器人系统的静态和动力分析。我们简要概述了工具箱的设计和结构,并通过将其结果与文献中发布的结果进行比较。为了突出该工具箱有效建模,模拟,优化和控制各种机器人系统的潜力,我们演示了四个示例应用程序。所示的应用探索了单,分支,开放式和闭合链机器人系统的不同执行器和外部加载条件。我们认为,软机器人研究社区将从Sorosim工具箱中大大受益,用于多种应用。
translated by 谷歌翻译