在动态,多助手和复杂的城市环境中驾驶是一个需要复杂的决策政策的艰巨任务。这种策略的学习需要可以编码整个环境的状态表示。作为图像编码车辆环境的中级表示已成为一种受欢迎的选择。仍然,它们是非常高的,限制了他们在诸如加固学习等数据饥饿的方法的使用。在本文中,我们建议通过利用相关语义因素的知识来学习环境的低维度和丰富的潜在表示。为此,我们训练编码器解码器深神经网络,以预测多种应用相关因素,例如其他代理和自助车的轨迹。此外,我们提出了一种基于其他车辆的未来轨迹的危险信号和计划的路由,这些路线与学习的潜在表示作为输入到下游策略的输入。我们演示了使用多头编码器解码器神经网络导致比标准单头模型更具信息的表示。特别是,所提出的代表学习和危险信号有助于加强学习以更快地学习,而性能提高,数据比基线方法更快。
translated by 谷歌翻译
由于互动交通参与者的随机性质和道路结构的复杂性,城市自动驾驶的决策是具有挑战性的。尽管基于强化的学习(RL)决策计划有望处理城市驾驶方案,但它的样本效率低和适应性差。在本文中,我们提出了Scene-Rep Transformer,以通过更好的场景表示编码和顺序预测潜在蒸馏来提高RL决策能力。具体而言,构建了多阶段变压器(MST)编码器,不仅对自我车辆及其邻居之间的相互作用意识进行建模,而且对代理商及其候选路线之间的意图意识。具有自我监督学习目标的连续潜伏变压器(SLT)用于将未来的预测信息提炼成潜在的场景表示,以减少勘探空间并加快训练的速度。基于软演员批评的最终决策模块(SAC)将来自场景rep变压器的精制潜在场景表示输入,并输出驾驶动作。该框架在五个挑战性的模拟城市场景中得到了验证,其性能通过成功率,安全性和效率方面的数据效率和性能的大幅度提高来定量表现出来。定性结果表明,我们的框架能够提取邻居代理人的意图,以帮助做出决策并提供更多多元化的驾驶行为。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
对于自动驾驶汽车而言,遍历交叉点是一个具有挑战性的问题,尤其是当交叉路口没有交通控制时。最近,由于其成功处理自动驾驶任务,深厚的强化学习受到了广泛的关注。在这项工作中,我们解决了使用新颖的课程进行深入增强学习的问题的问题。拟议的课程导致:1)与未经课程训练的代理人相比,增强剂学习代理的更快的训练过程和2)表现更好。我们的主要贡献是两个方面:1)提供一个独特的课程,用于训练深入的强化学习者,2)显示了所提出的课程在未信号的交叉遍历任务中的应用。该框架期望自动驾驶汽车的感知系统对周围环境进行了处理。我们在Comonroad运动计划模拟器中测试我们的TTTERTIONS和四向交集的方法。
translated by 谷歌翻译
培训可以在各种城市和公路情景中自主推动的智能代理在过去几十年中是机器人学会的热门话题。然而,在道路拓扑和邻近车辆定位方面的驾驶环境的多样性使得这个问题非常具有挑战性。不言而喻,虽然自动驾驶的场景特定的驾驶政策是有前途的,并且可以提高运输安全性和效率,但它们显然不是一个通用的可扩展解决方案。相反,我们寻求决策计划和驾驶策略,可以概括为新颖和看不见的环境。在这项工作中,我们利用了人类司机学习其周围环境的抽象表达的关键思想,这在各种驾驶场景和环境中相当类似。通过这些陈述,人类司机能够快速适应新颖的环境和在看不见的条件下驱动。正式地,通过强制信息瓶颈,我们提取一个潜在的表示,最小化\ extentit {距离} - 我们介绍的量化,以便在驱动场景之间介绍不同驾驶配置之间的相似性。然后采用这种潜在的空间作为Q学习模块的输入,以学习更广泛的驾驶策略。我们的实验表明,使用这种潜在的表示可以将崩溃的数量减少到大约一半。
translated by 谷歌翻译
由于交通的固有复杂性和不确定性,自主驾驶决策是一项具有挑战性的任务。例如,相邻的车辆可能随时改变其车道或超越,以通过慢速车辆或帮助交通流量。预期周围车辆的意图,估算其未来状态并将其整合到自动化车辆的决策过程中,可以提高复杂驾驶场景中自动驾驶的可靠性。本文提出了一种基于预测的深入强化学习(PDRL)决策模型,该模型在公路驾驶决策过程中考虑了周围车辆的操纵意图。该模型是使用真实流量数据训练的,并通过模拟平台在各种交通条件下进行了测试。结果表明,与深入的增强学习(DRL)模型相比,提出的PDRL模型通过减少碰撞数量来改善决策绩效,从而导致更安全的驾驶。
translated by 谷歌翻译
在多机构动态交通情况下的自主驾驶具有挑战性:道路使用者的行为不确定,很难明确建模,并且自我车辆应与他们应用复杂的谈判技巧,例如屈服,合并和交付,以实现,以实现在各种环境中都有安全有效的驾驶。在这些复杂的动态场景中,传统的计划方法主要基于规则,并且通常会导致反应性甚至过于保守的行为。因此,他们需要乏味的人类努力来维持可行性。最近,基于深度学习的方法显示出令人鼓舞的结果,具有更好的概括能力,但手工工程的工作较少。但是,它们要么是通过有监督的模仿学习(IL)来实施的,该学习遭受了数据集偏见和分配不匹配问题,要么接受了深入强化学习(DRL)的培训,但专注于一种特定的交通情况。在这项工作中,我们建议DQ-GAT实现可扩展和主动的自主驾驶,在这些驾驶中,基于图形注意力的网络用于隐式建模相互作用,并采用了深层Q学习来以无聊的方式训练网络端到端的网络。 。在高保真驾驶模拟器中进行的广泛实验表明,我们的方法比以前的基于学习的方法和传统的基于规则的方法获得了更高的成功率,并且在可见和看不见的情况下都可以更好地摆脱安全性和效率。此外,轨迹数据集的定性结果表明,我们所学的政策可以通过实时速度转移到现实世界中。演示视频可在https://caipeide.github.io/dq-gat/上找到。
translated by 谷歌翻译
由于交通环境的复杂性和波动性,自主驾驶中的决策是一个显着难的问题。在这个项目中,我们使用深度Q-network,以及基于规则的限制来使车道变化的决定。可以通过将高级横向决策与基于低级规则的轨迹监视相结合来获得安全高效的车道改变行为。预计该代理商在培训中,在实际的UDAcity模拟器中进行了适当的车道更换操作,总共100次发作。结果表明,基于规则的DQN比DQN方法更好地执行。基于规则的DQN达到0.8的安全速率和47英里/小时的平均速度
translated by 谷歌翻译
连续空间中有效有效的探索是将加固学习(RL)应用于自主驾驶的核心问题。从专家演示或为特定任务设计的技能可以使探索受益,但是它们通常是昂贵的,不平衡/次优的,或者未能转移到各种任务中。但是,人类驾驶员可以通过在整个技能空间中进行高效和结构性探索而不是具有特定于任务的技能的有限空间来适应各种驾驶任务。受上述事实的启发,我们提出了一种RL算法,以探索所有可行的运动技能,而不是一组有限的特定于任务和以对象为中心的技能。没有演示,我们的方法仍然可以在各种任务中表现出色。首先,我们以纯粹的运动角度构建了一个任务不合时宜的和以自我为中心的(TAEC)运动技能库,该运动技能库是足够多样化的,可以在不同的复杂任务中重复使用。然后,将运动技能编码为低维的潜在技能空间,其中RL可以有效地进行探索。在各种具有挑战性的驾驶场景中的验证表明,我们提出的方法TAEC-RL在学习效率和任务绩效方面的表现显着优于其同行。
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
End-to-end autonomous driving provides a feasible way to automatically maximize overall driving system performance by directly mapping the raw pixels from a front-facing camera to control signals. Recent advanced methods construct a latent world model to map the high dimensional observations into compact latent space. However, the latent states embedded by the world model proposed in previous works may contain a large amount of task-irrelevant information, resulting in low sampling efficiency and poor robustness to input perturbations. Meanwhile, the training data distribution is usually unbalanced, and the learned policy is hard to cope with the corner cases during the driving process. To solve the above challenges, we present a semantic masked recurrent world model (SEM2), which introduces a latent filter to extract key task-relevant features and reconstruct a semantic mask via the filtered features, and is trained with a multi-source data sampler, which aggregates common data and multiple corner case data in a single batch, to balance the data distribution. Extensive experiments on CARLA show that our method outperforms the state-of-the-art approaches in terms of sample efficiency and robustness to input permutations.
translated by 谷歌翻译
决策对于自动驾驶的车道变化至关重要。强化学习(RL)算法旨在确定各种情况下的行为价值,因此它们成为解决决策问题的有前途的途径。但是,运行时安全性较差,阻碍了基于RL的决策策略,从实践中进行了复杂的驾驶任务。为了解决这个问题,本文将人类的示范纳入了基于RL的决策策略中。人类受试者在驾驶模拟器中做出的决定被视为安全的示范,将其存储到重播缓冲液中,然后用来增强RL的训练过程。建立了一个复杂的车道变更任务,以检查开发策略的性能。仿真结果表明,人类的演示可以有效地提高RL决策的安全性。而拟议的策略超过了其他基于学习的决策策略,就多种驾驶表演而言。
translated by 谷歌翻译
离线强化学习(RL)为从离线数据提供学习决策的框架,因此构成了现实世界应用程序作为自动驾驶的有希望的方法。自动驾驶车辆(SDV)学习策略,这甚至可能甚至优于次优数据集中的行为。特别是在安全关键应用中,作为自动化驾驶,解释性和可转换性是成功的关键。这激发了使用基于模型的离线RL方法,该方法利用规划。然而,目前的最先进的方法往往忽视了多种子体系统随机行为引起的溶液不确定性的影响。这项工作提出了一种新的基于不确定感知模型的离线强化学习利用规划(伞)的新方法,其解决了以可解释的基于学习的方式共同的预测,规划和控制问题。训练有素的动作调节的随机动力学模型捕获了交通场景的独特不同的未来演化。分析为我们在挑战自动化驾驶模拟中的效力和基于现实世界的公共数据集的方法提供了经验证据。
translated by 谷歌翻译
当前的端到端自动驾驶方法要么基于计划的轨迹运行控制器,要么直接执行控制预测,这已经跨越了两条单独研究的研究线。本文看到了它们彼此的潜在相互利益,主动探讨了这两个发展良好的世界的结合。具体而言,我们的集成方法分别有两个用于轨迹计划和直接控制的分支。轨迹分支可以预测未来的轨迹,而控制分支则涉及一种新颖的多步预测方案,以便可以将当前动作与未来状态之间的关系进行推理。连接了两个分支,因此控制分支在每个时间步骤中从轨迹分支接收相应的指导。然后将来自两个分支的输出融合以实现互补的优势。我们的结果在闭环城市驾驶环境中进行了评估,并使用CARLA模拟器具有挑战性的情况。即使有了单眼相机的输入,建议的方法在官方Carla排行榜上排名第一$,超过了其他具有多个传感器或融合机制的复杂候选人。源代码和数据将在https://github.com/openperceptionx/tcp上公开提供。
translated by 谷歌翻译
应用强化学习来自动驾驶需要某些挑战,这主要是由于大规模的交通流动,这种挑战是动态变化的。为了应对此类挑战,有必要快速确定对周围车辆不断变化的意图的响应策略。因此,我们提出了一种新的政策优化方法,用于使用基于图的互动感知约束来安全驾驶。在此框架中,运动预测和控制模块是同时训练的,同时共享包含社会环境的潜在表示。此外,为了反映社交互动,我们以图形形式表达了代理的运动并过滤特征。这有助于保留相邻节点的时空位置。此外,我们创建反馈循环以有效地组合这两个模块。结果,这种方法鼓励博学的控制器免受动态风险的侵害,并在各种情况下使运动预测强大。在实验中,我们与城市驾驶模拟器Carla建立了一个包括各种情况的导航场景。该实验表明,与基线相比,导航策略和运动预测的两侧的最新性能。
translated by 谷歌翻译
Traditional planning and control methods could fail to find a feasible trajectory for an autonomous vehicle to execute amongst dense traffic on roads. This is because the obstacle-free volume in spacetime is very small in these scenarios for the vehicle to drive through. However, that does not mean the task is infeasible since human drivers are known to be able to drive amongst dense traffic by leveraging the cooperativeness of other drivers to open a gap. The traditional methods fail to take into account the fact that the actions taken by an agent affect the behaviour of other vehicles on the road. In this work, we rely on the ability of deep reinforcement learning to implicitly model such interactions and learn a continuous control policy over the action space of an autonomous vehicle. The application we consider requires our agent to negotiate and open a gap in the road in order to successfully merge or change lanes. Our policy learns to repeatedly probe into the target road lane while trying to find a safe spot to move in to. We compare against two model-predictive control-based algorithms and show that our policy outperforms them in simulation.
translated by 谷歌翻译
交叉点是自主行驶中最复杂和事故的城市场景之一,其中制造安全和计算有效的决策是非微不足道的。目前的研究主要关注简化的交通状况,同时忽略了混合交通流量的存在,即车辆,骑自行车者和行人。对于城市道路而言,不同的参与者导致了一个非常动态和复杂的互动,从而冒着学习智能政策的困难。本文在集成决策和控制框架中开发动态置换状态表示,以处理与混合业务流的信号化交集。特别地,该表示引入了编码功能和总和运算符,以构建来自环境观察的驱动状态,能够处理不同类型和变体的交通参与者。构建了受约束的最佳控制问题,其中目标涉及跟踪性能,并且不同参与者和信号灯的约束分别设计以确保安全性。我们通过离线优化编码函数,值函数和策略函数来解决这个问题,其中编码函数给出合理的状态表示,然后用作策略和值函数的输入。禁止策略培训旨在重用从驾驶环境中的观察,并且使用时间通过时间来利用策略函数和编码功能联合。验证结果表明,动态置换状态表示可以增强IDC的驱动性能,包括具有大边距的舒适性,决策合规性和安全性。训练有素的驾驶政策可以实现复杂交叉口的高效和平滑通过,同时保证驾驶智能和安全性。
translated by 谷歌翻译
为了关注自动驾驶工具的点对点导航的任务,我们提出了一种新颖的深度学习模型,该模型接受了端到端和多任务学习的方式,以同时执行感知和控制任务。该模型用于通过按照全球规划器定义的一系列路线来安全地驱动自我车辆。模型的感知部分用于编码RGBD摄像机提供的高维观察数据,同时执行语义分割,语义深度云(SDC)映射以及交通灯状态和停止符号预测。然后,控制零件将解码编码的功能以及GPS和速度计提供的其他信息,以预测带有潜在特征空间的路点。此外,还采用了两名代理来处理这些输出,并制定控制策略,以确定转向,油门和制动的水平为最终动作。在Carla模拟器上评估该模型,其各种情况由正常的对抗情况和不同的风雨制成,以模仿现实世界中的情况。此外,我们对一些最近的模型进行了比较研究,以证明驾驶多个方面的性能是合理的。此外,我们还对SDC映射和多代理进行了消融研究,以了解其角色和行为。结果,即使参数和计算负载较少,我们的模型也达到了最高的驾驶得分。为了支持未来的研究,我们可以在https://github.com/oskarnatan/end-to-end-drive上分享我们的代码。
translated by 谷歌翻译
自主驾驶有可能彻底改变流动性,因此是一个积极的研究领域。实际上,自动驾驶汽车的行为必须是可以接受的,即高效,安全和可解释的。尽管香草钢筋学习(RL)找到了表现的行为策略,但它们通常是不安全且无法解释的。安全性是通过安全的RL方法引入的,但是它们仍然无法解释,因为学习的行为在没有分别进行建模的情况下共同优化了安全性和性能。可解释的机器学习很少应用于RL。本文提出了SAFEDQN,它允许在仍然有效的同时使自动驾驶汽车的行为安全可解释。 SAFEDQN在算法上透明的同时,在预期风险和效用的效用之间提供了可以理解的语义权衡。我们表明,SAFEDQN为各种场景找到了可解释且安全的驾驶政策,并展示了最先进的显着性技术如何帮助评估风险和实用性。
translated by 谷歌翻译
在本文中,我们提出了一个系统,以培训不仅从自我车辆收集的经验,而且还观察到的所有车辆的经验。该系统使用其他代理的行为来创建更多样化的驾驶场景,而无需收集其他数据。从其他车辆学习的主要困难是没有传感器信息。我们使用一组监督任务来学习一个中间表示,这是对控制车辆的观点不变的。这不仅在训练时间提供了更丰富的信号,而且还可以在推断过程中进行更复杂的推理。了解所有车辆驾驶如何有助于预测测试时的行为,并避免碰撞。我们在闭环驾驶模拟中评估该系统。我们的系统的表现优于公共卡拉排行榜上的所有先前方法,较大的利润率将驾驶得分提高了25,路线完成率提高了24分。我们的方法赢得了2021年的卡拉自动驾驶挑战。代码和数据可在https://github.com/dotchen/lav上获得。
translated by 谷歌翻译