培训可以在各种城市和公路情景中自主推动的智能代理在过去几十年中是机器人学会的热门话题。然而,在道路拓扑和邻近车辆定位方面的驾驶环境的多样性使得这个问题非常具有挑战性。不言而喻,虽然自动驾驶的场景特定的驾驶政策是有前途的,并且可以提高运输安全性和效率,但它们显然不是一个通用的可扩展解决方案。相反,我们寻求决策计划和驾驶策略,可以概括为新颖和看不见的环境。在这项工作中,我们利用了人类司机学习其周围环境的抽象表达的关键思想,这在各种驾驶场景和环境中相当类似。通过这些陈述,人类司机能够快速适应新颖的环境和在看不见的条件下驱动。正式地,通过强制信息瓶颈,我们提取一个潜在的表示,最小化\ extentit {距离} - 我们介绍的量化,以便在驱动场景之间介绍不同驾驶配置之间的相似性。然后采用这种潜在的空间作为Q学习模块的输入,以学习更广泛的驾驶策略。我们的实验表明,使用这种潜在的表示可以将崩溃的数量减少到大约一半。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
由于互动交通参与者的随机性质和道路结构的复杂性,城市自动驾驶的决策是具有挑战性的。尽管基于强化的学习(RL)决策计划有望处理城市驾驶方案,但它的样本效率低和适应性差。在本文中,我们提出了Scene-Rep Transformer,以通过更好的场景表示编码和顺序预测潜在蒸馏来提高RL决策能力。具体而言,构建了多阶段变压器(MST)编码器,不仅对自我车辆及其邻居之间的相互作用意识进行建模,而且对代理商及其候选路线之间的意图意识。具有自我监督学习目标的连续潜伏变压器(SLT)用于将未来的预测信息提炼成潜在的场景表示,以减少勘探空间并加快训练的速度。基于软演员批评的最终决策模块(SAC)将来自场景rep变压器的精制潜在场景表示输入,并输出驾驶动作。该框架在五个挑战性的模拟城市场景中得到了验证,其性能通过成功率,安全性和效率方面的数据效率和性能的大幅度提高来定量表现出来。定性结果表明,我们的框架能够提取邻居代理人的意图,以帮助做出决策并提供更多多元化的驾驶行为。
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
在多机构动态交通情况下的自主驾驶具有挑战性:道路使用者的行为不确定,很难明确建模,并且自我车辆应与他们应用复杂的谈判技巧,例如屈服,合并和交付,以实现,以实现在各种环境中都有安全有效的驾驶。在这些复杂的动态场景中,传统的计划方法主要基于规则,并且通常会导致反应性甚至过于保守的行为。因此,他们需要乏味的人类努力来维持可行性。最近,基于深度学习的方法显示出令人鼓舞的结果,具有更好的概括能力,但手工工程的工作较少。但是,它们要么是通过有监督的模仿学习(IL)来实施的,该学习遭受了数据集偏见和分配不匹配问题,要么接受了深入强化学习(DRL)的培训,但专注于一种特定的交通情况。在这项工作中,我们建议DQ-GAT实现可扩展和主动的自主驾驶,在这些驾驶中,基于图形注意力的网络用于隐式建模相互作用,并采用了深层Q学习来以无聊的方式训练网络端到端的网络。 。在高保真驾驶模拟器中进行的广泛实验表明,我们的方法比以前的基于学习的方法和传统的基于规则的方法获得了更高的成功率,并且在可见和看不见的情况下都可以更好地摆脱安全性和效率。此外,轨迹数据集的定性结果表明,我们所学的政策可以通过实时速度转移到现实世界中。演示视频可在https://caipeide.github.io/dq-gat/上找到。
translated by 谷歌翻译
在动态,多助手和复杂的城市环境中驾驶是一个需要复杂的决策政策的艰巨任务。这种策略的学习需要可以编码整个环境的状态表示。作为图像编码车辆环境的中级表示已成为一种受欢迎的选择。仍然,它们是非常高的,限制了他们在诸如加固学习等数据饥饿的方法的使用。在本文中,我们建议通过利用相关语义因素的知识来学习环境的低维度和丰富的潜在表示。为此,我们训练编码器解码器深神经网络,以预测多种应用相关因素,例如其他代理和自助车的轨迹。此外,我们提出了一种基于其他车辆的未来轨迹的危险信号和计划的路由,这些路线与学习的潜在表示作为输入到下游策略的输入。我们演示了使用多头编码器解码器神经网络导致比标准单头模型更具信息的表示。特别是,所提出的代表学习和危险信号有助于加强学习以更快地学习,而性能提高,数据比基线方法更快。
translated by 谷歌翻译
End-to-end autonomous driving provides a feasible way to automatically maximize overall driving system performance by directly mapping the raw pixels from a front-facing camera to control signals. Recent advanced methods construct a latent world model to map the high dimensional observations into compact latent space. However, the latent states embedded by the world model proposed in previous works may contain a large amount of task-irrelevant information, resulting in low sampling efficiency and poor robustness to input perturbations. Meanwhile, the training data distribution is usually unbalanced, and the learned policy is hard to cope with the corner cases during the driving process. To solve the above challenges, we present a semantic masked recurrent world model (SEM2), which introduces a latent filter to extract key task-relevant features and reconstruct a semantic mask via the filtered features, and is trained with a multi-source data sampler, which aggregates common data and multiple corner case data in a single batch, to balance the data distribution. Extensive experiments on CARLA show that our method outperforms the state-of-the-art approaches in terms of sample efficiency and robustness to input permutations.
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
通过改善安全性,效率和移动性,自动车辆(AVS)的快速发展持有运输系统的巨大潜力。然而,通过AVS被采用的这些影响的进展尚不清楚。众多技术挑战是出于分析自治的部分采用:部分控制和观察,多车辆互动以及现实世界网络代表的纯粹场景的目标。本文研究了近期AV影响,研究了深度加强学习(RL)在低AV采用政权中克服了这些挑战的适用性。提出了一个模块化学习框架,它利用深rl来解决复杂的交通动态。模块组成用于捕获常见的交通现象(停止和转运交通拥堵,车道更改,交叉点)。在系统级速度方面,发现了学习的控制法则改善人类驾驶绩效,高达57%,只有4-7%的AVS。此外,在单线交通中,发现只有局部观察的小型神经网络控制规律消除了停止和转移的流量 - 超过所有已知的基于模型的控制器,以实现近乎最佳性能 - 并概括为OUT-分销交通密度。
translated by 谷歌翻译
自动驾驶在过去二十年中吸引了重要的研究兴趣,因为它提供了许多潜在的好处,包括释放驾驶和减轻交通拥堵的司机等。尽管进展有前途,但车道变化仍然是自治车辆(AV)的巨大挑战,特别是在混合和动态的交通方案中。最近,强化学习(RL)是一种强大的数据驱动控制方法,已被广泛探索了在令人鼓舞的效果中的通道中的车道改变决策。然而,这些研究的大多数研究专注于单车展,并且在多个AVS与人类驱动车辆(HDV)共存的情况下,道路变化已经受到稀缺的关注。在本文中,我们在混合交通公路环境中制定了多个AVS的车道改变决策,作为多功能增强学习(Marl)问题,其中每个AV基于相邻AV的动作使车道变化的决定和HDV。具体地,使用新颖的本地奖励设计和参数共享方案开发了一种多代理优势演员批评网络(MA2C)。特别是,提出了一种多目标奖励功能来纳入燃油效率,驾驶舒适度和自主驾驶的安全性。综合实验结果,在三种不同的交通密度和各级人类司机侵略性下进行,表明我们所提出的Marl框架在效率,安全和驾驶员舒适方面始终如一地优于几个最先进的基准。
translated by 谷歌翻译
Transformer, originally devised for natural language processing, has also attested significant success in computer vision. Thanks to its super expressive power, researchers are investigating ways to deploy transformers to reinforcement learning (RL) and the transformer-based models have manifested their potential in representative RL benchmarks. In this paper, we collect and dissect recent advances on transforming RL by transformer (transformer-based RL or TRL), in order to explore its development trajectory and future trend. We group existing developments in two categories: architecture enhancement and trajectory optimization, and examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving. For architecture enhancement, these methods consider how to apply the powerful transformer structure to RL problems under the traditional RL framework, which model agents and environments much more precisely than deep RL methods, but they are still limited by the inherent defects of traditional RL algorithms, such as bootstrapping and "deadly triad". For trajectory optimization, these methods treat RL problems as sequence modeling and train a joint state-action model over entire trajectories under the behavior cloning framework, which are able to extract policies from static datasets and fully use the long-sequence modeling capability of the transformer. Given these advancements, extensions and challenges in TRL are reviewed and proposals about future direction are discussed. We hope that this survey can provide a detailed introduction to TRL and motivate future research in this rapidly developing field.
translated by 谷歌翻译
强化学习(RL)已证明可以在各种任务中达到超级人类水平的表现。但是,与受监督的机器学习不同,将其推广到各种情况的学习策略仍然是现实世界中最具挑战性的问题之一。自主驾驶(AD)提供了一个多方面的实验领域,因为有必要在许多变化的道路布局和可能的交通情况大量分布中学习正确的行为,包括个人驾驶员个性和难以预测的交通事件。在本文中,我们根据可配置,灵活和性能的代码库为AD提出了一个具有挑战性的基准。我们的基准测试使用了随机场景生成器的目录,包括用于道路布局和交通变化的多种机制,不同的数值和视觉观察类型,不同的动作空间,不同的车辆模型,并允许在静态场景定义下使用。除了纯粹的算法见解外,我们面向应用程序的基准还可以更好地理解设计决策的影响,例如行动和观察空间对政策的普遍性。我们的基准旨在鼓励研究人员提出能够在各种情况下成功概括的解决方案,这是当前RL方法失败的任务。基准的代码可在https://github.com/seawee1/driver-dojo上获得。
translated by 谷歌翻译
行人在场的运动控制算法对于开发安全可靠的自动驾驶汽车(AV)至关重要。传统运动控制算法依赖于手动设计的决策政策,这些政策忽略了AV和行人之间的相互作用。另一方面,深度强化学习的最新进展允许在没有手动设计的情况下自动学习政策。为了解决行人在场的决策问题,作者介绍了一个基于社会价值取向和深入强化学习(DRL)的框架,该框架能够以不同的驾驶方式生成决策政策。该政策是在模拟环境中使用最先进的DRL算法培训的。还引入了适合DRL训练的新型计算效率的行人模型。我们执行实验以验证我们的框架,并对使用两种不同的无模型深钢筋学习算法获得的策略进行了比较分析。模拟结果表明,开发的模型如何表现出自然的驾驶行为,例如短暂的驾驶行为,以促进行人的穿越。
translated by 谷歌翻译
解释性对于自主车辆和其他机器人系统在操作期间与人类和其他物体相互作用至关重要。人类需要了解和预测机器采取的行动,以获得可信赖和安全的合作。在这项工作中,我们的目标是开发一个可解释的模型,可以与人类领域知识和模型的固有因果关系一致地产生解释。特别是,我们专注于自主驾驶,多代理交互建模的基本构建块。我们提出了接地的关系推理(GRI)。它通过推断代理关系的相互作用图来模拟交互式系统的底层动态。我们通过将关系潜空间接地为具有专家域知识定义的语义互动行为来确保语义有意义的交互图。我们展示它可以在模拟和现实世界中建模交互式交通方案,并生成解释车辆行为的语义图。
translated by 谷歌翻译
随着自动组件比例越来越多的新兴车辆系统提供了最佳控制的机会,以减轻交通拥堵和提高效率。最近有兴趣将深入增强学习(DRL)应用于这些非线性动力学系统,以自动设计有效的控制策略。尽管DRL是无模型的概念优势,但研究通常仍依赖于对特定车辆系统的艰苦训练设置。这是对各种车辆和机动性系统有效分析的关键挑战。为此,本文贡献了一种简化的用于车辆微仿真的方法,并以最少的手动设计发现了高性能控制策略。提出了一种可变的代理,多任务方法,以优化车辆部分观察到的马尔可夫决策过程。该方法在混合自治交通系统上进行了实验验证,该系统是自动化的。在六种不同的开放或封闭交通系统的所有配置中都可以观察到经验改进,通常比人类驾驶基线的15-60%。该研究揭示了许多紧急行为类似于缓解波浪,交通信号传导和坡道计量。最后,对新兴行为进行了分析,以产生可解释的控制策略,这些控制策略已通过学习的控制策略进行了验证。
translated by 谷歌翻译
本文提出了一个基于加固学习(RL)的电动连接车辆(CV)的生态驾驶框架,以提高信号交叉点的车辆能效。通过整合基于型号的汽车策略,改变车道的政策和RL政策来确保车辆代理的安全操作。随后,制定了马尔可夫决策过程(MDP),该过程使车辆能够执行纵向控制和横向决策,从而共同优化了交叉口附近CVS的CAR跟踪和改变车道的行为。然后,将混合动作空间参数化为层次结构,从而在动态交通环境中使用二维运动模式训练代理。最后,我们所提出的方法从基于单车的透视和基于流的透视图中在Sumo软件中进行了评估。结果表明,我们的策略可以通过学习适当的动作方案来大大减少能源消耗,而不会中断其他人类驱动的车辆(HDVS)。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
离线强化学习(RL)为从离线数据提供学习决策的框架,因此构成了现实世界应用程序作为自动驾驶的有希望的方法。自动驾驶车辆(SDV)学习策略,这甚至可能甚至优于次优数据集中的行为。特别是在安全关键应用中,作为自动化驾驶,解释性和可转换性是成功的关键。这激发了使用基于模型的离线RL方法,该方法利用规划。然而,目前的最先进的方法往往忽视了多种子体系统随机行为引起的溶液不确定性的影响。这项工作提出了一种新的基于不确定感知模型的离线强化学习利用规划(伞)的新方法,其解决了以可解释的基于学习的方式共同的预测,规划和控制问题。训练有素的动作调节的随机动力学模型捕获了交通场景的独特不同的未来演化。分析为我们在挑战自动化驾驶模拟中的效力和基于现实世界的公共数据集的方法提供了经验证据。
translated by 谷歌翻译
由于交通的固有复杂性和不确定性,自主驾驶决策是一项具有挑战性的任务。例如,相邻的车辆可能随时改变其车道或超越,以通过慢速车辆或帮助交通流量。预期周围车辆的意图,估算其未来状态并将其整合到自动化车辆的决策过程中,可以提高复杂驾驶场景中自动驾驶的可靠性。本文提出了一种基于预测的深入强化学习(PDRL)决策模型,该模型在公路驾驶决策过程中考虑了周围车辆的操纵意图。该模型是使用真实流量数据训练的,并通过模拟平台在各种交通条件下进行了测试。结果表明,与深入的增强学习(DRL)模型相比,提出的PDRL模型通过减少碰撞数量来改善决策绩效,从而导致更安全的驾驶。
translated by 谷歌翻译
自动驾驶汽车是一项不断发展的技术,旨在通过自动操作从车道变更到超车来提高安全性,可访问性,效率和便利性。超车是自动驾驶汽车最具挑战性的操作之一,当前的自动超车技术仅限于简单情况。本文研究了如何通过允许动作流产来提高自主超车的安全性。我们提出了一个基于深层Q网络的决策过程,以确定是否以及何时需要中止超车的操作。拟议的算法在与交通情况不同的模拟中进行了经验评估,这表明所提出的方法可以改善超车手动过程中的安全性。此外,使用自动班车Iseauto在现实世界实验中证明了该方法。
translated by 谷歌翻译