解释性对于自主车辆和其他机器人系统在操作期间与人类和其他物体相互作用至关重要。人类需要了解和预测机器采取的行动,以获得可信赖和安全的合作。在这项工作中,我们的目标是开发一个可解释的模型,可以与人类领域知识和模型的固有因果关系一致地产生解释。特别是,我们专注于自主驾驶,多代理交互建模的基本构建块。我们提出了接地的关系推理(GRI)。它通过推断代理关系的相互作用图来模拟交互式系统的底层动态。我们通过将关系潜空间接地为具有专家域知识定义的语义互动行为来确保语义有意义的交互图。我们展示它可以在模拟和现实世界中建模交互式交通方案,并生成解释车辆行为的语义图。
translated by 谷歌翻译
多代理行为建模和轨迹预测对于交互式情景中的自主代理安全导航至关重要。变形AutiaceCoder(VAE)已广泛应用于多代理交互建模以产生各种行为,并学习用于交互系统的低维表示。然而,如果基于VAE的模型可以正确编码相互作用,现有文献没有正式讨论。在这项工作中,我们认为,多种子体模型中的典型VAE典型配方之一受到我们称为社会后崩倒数的问题,即,在预测代理人的未来轨迹时,该模型容易忽略历史社会环境。它可能导致显着的预测误差和较差的泛化性能。我们分析了这一探索现象背后的原因,并提出了几项解决方案的措施。之后,我们在实际数据集上实施了拟议的框架和实验,用于多代理轨迹预测。特别是,我们提出了一种新颖的稀疏图表关注消息传递(稀疏垃圾)层,这有助于我们在我们的实验中检测到社会后塌崩溃。在实验中,我们确认确实发生了社会后塌崩溃。此外,拟议的措施有助于减轻这个问题。结果,当历史社会上下文是信息性的预测信息时,该模型达到了更好的泛化性能。
translated by 谷歌翻译
有效理解动态发展的多种互动对于捕获社会系统中代理的潜在行为至关重要。通常要直接观察这些相互作用是一项挑战,因此对潜在相互作用进行建模对于实现复杂行为至关重要。动态神经关系推断(DNRI)的最新工作在每个步骤中都捕获了明确的互动相互作用。但是,在每个步骤中的预测都会导致嘈杂的相互作用,并且没有事后检查就缺乏内在的解释性。此外,它需要访问地面真理注释来分析难以获得的预测相互作用。本文介绍了Dider,发现了可解释的动态发展关系,这是一种具有内在解释性的通用端到端交互建模框架。 Dider通过将潜在相互作用预测的任务分解为亚相互作用预测和持续时间估计,发现了一个可解释的代理相互作用序列。通过在延长的时间持续时间内强加亚相互作用类型的一致性,提出的框架可以实现内在的解释性,而无需进行任何事后检查。我们在合成数据集和现实世界数据集上评估了Dider。实验结果表明,建模解剖和可解释的动态关系可改善轨迹预测任务的性能。
translated by 谷歌翻译
为了计划安全的演习并采取远见卓识,自动驾驶汽车必须能够准确预测不确定的未来。在自主驾驶的背景下,深层神经网络已成功地应用于从数据中学习人类驾驶行为的预测模型。但是,这些预测遭受了级联错误的影响,导致长时间的不准确性。此外,学识渊博的模型是黑匣子,因此通常不清楚它们如何得出预测。相比之下,由人类专家告知的基于规则的模型在其预测中保持长期连贯性,并且是可解释的。但是,这样的模型通常缺乏捕获复杂的现实世界动态所需的足够表现力。在这项工作中,我们开始通过将智能驱动程序模型(一种流行的手工制作的驱动程序模型)嵌入深度神经网络来缩小这一差距。我们的模型的透明度可以提供可观的优势,例如在调试模型并更容易解释其预测时。我们在模拟合并方案中评估我们的方法,表明它产生了可端到端训练的强大模型,并无需为模型的预测准确性提供更大的透明度。
translated by 谷歌翻译
在高度互动的场景中进行运动预测是自主驾驶中的一个挑战性问题。在这种情况下,我们需要准确预测相互作用的代理的共同行为,以确保自动驾驶汽车的安全有效导航。最近,由于其在性能方面的优势和捕获轨迹分布中多模态的能力,目标条件方法引起了人们的关注。在这项工作中,我们研究了目标条件框架的联合轨迹预测问题。特别是,我们引入了一个有条件的基于AutoEncoder(CVAE)模型,以将不同的相互作用模式明确地编码到潜在空间中。但是,我们发现香草模型遭受后塌陷,无法根据需要诱导信息的潜在空间。为了解决这些问题,我们提出了一种新颖的方法,以避免KL消失并诱导具有伪标签的可解释的互动潜在空间。提出的伪标签使我们能够以灵活的方式将域知识纳入有关相互作用的知识。我们使用说明性玩具示例激励提出的方法。此外,我们通过定量和定性评估验证Waymo Open Motion数据集上的框架。
translated by 谷歌翻译
Motion prediction systems aim to capture the future behavior of traffic scenarios enabling autonomous vehicles to perform safe and efficient planning. The evolution of these scenarios is highly uncertain and depends on the interactions of agents with static and dynamic objects in the scene. GNN-based approaches have recently gained attention as they are well suited to naturally model these interactions. However, one of the main challenges that remains unexplored is how to address the complexity and opacity of these models in order to deal with the transparency requirements for autonomous driving systems, which includes aspects such as interpretability and explainability. In this work, we aim to improve the explainability of motion prediction systems by using different approaches. First, we propose a new Explainable Heterogeneous Graph-based Policy (XHGP) model based on an heterograph representation of the traffic scene and lane-graph traversals, which learns interaction behaviors using object-level and type-level attention. This learned attention provides information about the most important agents and interactions in the scene. Second, we explore this same idea with the explanations provided by GNNExplainer. Third, we apply counterfactual reasoning to provide explanations of selected individual scenarios by exploring the sensitivity of the trained model to changes made to the input data, i.e., masking some elements of the scene, modifying trajectories, and adding or removing dynamic agents. The explainability analysis provided in this paper is a first step towards more transparent and reliable motion prediction systems, important from the perspective of the user, developers and regulatory agencies. The code to reproduce this work is publicly available at https://github.com/sancarlim/Explainable-MP/tree/v1.1.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
深度强化学习(DRL)赋予了各种人工智能领域,包括模式识别,机器人技术,推荐系统和游戏。同样,图神经网络(GNN)也证明了它们在图形结构数据的监督学习方面的出色表现。最近,GNN与DRL用于图形结构环境的融合引起了很多关注。本文对这些混合动力作品进行了全面评论。这些作品可以分为两类:(1)算法增强,其中DRL和GNN相互补充以获得更好的实用性; (2)特定于应用程序的增强,其中DRL和GNN相互支持。这种融合有效地解决了工程和生命科学方面的各种复杂问题。基于审查,我们进一步分析了融合这两个领域的适用性和好处,尤其是在提高通用性和降低计算复杂性方面。最后,集成DRL和GNN的关键挑战以及潜在的未来研究方向被突出显示,这将引起更广泛的机器学习社区的关注。
translated by 谷歌翻译
值得信赖的强化学习算法应有能力解决挑战性的现实问题,包括{Robustly}处理不确定性,满足{安全}的限制以避免灾难性的失败,以及在部署过程中{prencepentiming}以避免灾难性的失败}。这项研究旨在概述这些可信赖的强化学习的主要观点,即考虑其在鲁棒性,安全性和概括性上的内在脆弱性。特别是,我们给出严格的表述,对相应的方法进行分类,并讨论每个观点的基准。此外,我们提供了一个前景部分,以刺激有希望的未来方向,并简要讨论考虑人类反馈的外部漏洞。我们希望这项调查可以在统一的框架中将单独的研究汇合在一起,并促进强化学习的可信度。
translated by 谷歌翻译
离线强化学习(RL)为从离线数据提供学习决策的框架,因此构成了现实世界应用程序作为自动驾驶的有希望的方法。自动驾驶车辆(SDV)学习策略,这甚至可能甚至优于次优数据集中的行为。特别是在安全关键应用中,作为自动化驾驶,解释性和可转换性是成功的关键。这激发了使用基于模型的离线RL方法,该方法利用规划。然而,目前的最先进的方法往往忽视了多种子体系统随机行为引起的溶液不确定性的影响。这项工作提出了一种新的基于不确定感知模型的离线强化学习利用规划(伞)的新方法,其解决了以可解释的基于学习的方式共同的预测,规划和控制问题。训练有素的动作调节的随机动力学模型捕获了交通场景的独特不同的未来演化。分析为我们在挑战自动化驾驶模拟中的效力和基于现实世界的公共数据集的方法提供了经验证据。
translated by 谷歌翻译
Making safe and human-like decisions is an essential capability of autonomous driving systems and learning-based behavior planning is a promising pathway toward this objective. Distinguished from existing learning-based methods that directly output decisions, this work introduces a predictive behavior planning framework that learns to predict and evaluate from human driving data. Concretely, a behavior generation module first produces a diverse set of candidate behaviors in the form of trajectory proposals. Then the proposed conditional motion prediction network is employed to forecast other agents' future trajectories conditioned on each trajectory proposal. Given the candidate plans and associated prediction results, we learn a scoring module to evaluate the plans using maximum entropy inverse reinforcement learning (IRL). We conduct comprehensive experiments to validate the proposed framework on a large-scale real-world urban driving dataset. The results reveal that the conditional prediction model is able to forecast multiple possible future trajectories given a candidate behavior and the prediction results are reactive to different plans. Moreover, the IRL-based scoring module can properly evaluate the trajectory proposals and select close-to-human ones. The proposed framework outperforms other baseline methods in terms of similarity to human driving trajectories. Moreover, we find that the conditional prediction model can improve both prediction and planning performance compared to the non-conditional model, and learning the scoring module is critical to correctly evaluating the candidate plans to align with human drivers.
translated by 谷歌翻译
交通模拟器是运输系统运营和计划中的重要组成部分。常规的交通模拟器通常采用校准的物理跟踪模型来描述车辆的行为及其与交通环境的相互作用。但是,没有普遍的物理模型可以准确地预测不同情况下车辆行为的模式。鉴于交通动态的非平稳性质,固定的物理模型在复杂的环境中往往不太有效。在本文中,我们将流量模拟作为一个反向加强学习问题,并提出一个参数共享对抗性逆增强学习模型,以进行动态射击模拟学习。我们提出的模型能够模仿现实世界中车辆的轨迹,同时恢复奖励功能,从而揭示了车辆的真实目标,这是不同动态的不变。关于合成和现实世界数据集的广泛实验表明,与最先进的方法相比,我们方法的出色性能及其对流量变化动态的鲁棒性。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
培训可以在各种城市和公路情景中自主推动的智能代理在过去几十年中是机器人学会的热门话题。然而,在道路拓扑和邻近车辆定位方面的驾驶环境的多样性使得这个问题非常具有挑战性。不言而喻,虽然自动驾驶的场景特定的驾驶政策是有前途的,并且可以提高运输安全性和效率,但它们显然不是一个通用的可扩展解决方案。相反,我们寻求决策计划和驾驶策略,可以概括为新颖和看不见的环境。在这项工作中,我们利用了人类司机学习其周围环境的抽象表达的关键思想,这在各种驾驶场景和环境中相当类似。通过这些陈述,人类司机能够快速适应新颖的环境和在看不见的条件下驱动。正式地,通过强制信息瓶颈,我们提取一个潜在的表示,最小化\ extentit {距离} - 我们介绍的量化,以便在驱动场景之间介绍不同驾驶配置之间的相似性。然后采用这种潜在的空间作为Q学习模块的输入,以学习更广泛的驾驶策略。我们的实验表明,使用这种潜在的表示可以将崩溃的数量减少到大约一半。
translated by 谷歌翻译
这项调查回顾了对基于视觉的自动驾驶系统进行行为克隆训练的解释性方法。解释性的概念具有多个方面,并且需要解释性的驾驶强度是一种安全至关重要的应用。从几个研究领域收集贡献,即计算机视觉,深度学习,自动驾驶,可解释的AI(X-AI),这项调查可以解决几点。首先,它讨论了从自动驾驶系统中获得更多可解释性和解释性的定义,上下文和动机,以及该应用程序特定的挑战。其次,以事后方式为黑盒自动驾驶系统提供解释的方法是全面组织和详细的。第三,详细介绍和讨论了旨在通过设计构建更容易解释的自动驾驶系统的方法。最后,确定并检查了剩余的开放挑战和潜在的未来研究方向。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
应用强化学习来自动驾驶需要某些挑战,这主要是由于大规模的交通流动,这种挑战是动态变化的。为了应对此类挑战,有必要快速确定对周围车辆不断变化的意图的响应策略。因此,我们提出了一种新的政策优化方法,用于使用基于图的互动感知约束来安全驾驶。在此框架中,运动预测和控制模块是同时训练的,同时共享包含社会环境的潜在表示。此外,为了反映社交互动,我们以图形形式表达了代理的运动并过滤特征。这有助于保留相邻节点的时空位置。此外,我们创建反馈循环以有效地组合这两个模块。结果,这种方法鼓励博学的控制器免受动态风险的侵害,并在各种情况下使运动预测强大。在实验中,我们与城市驾驶模拟器Carla建立了一个包括各种情况的导航场景。该实验表明,与基线相比,导航策略和运动预测的两侧的最新性能。
translated by 谷歌翻译
自治车辆的评估和改善规划需要可扩展的长尾交通方案。有用的是,这些情景必须是现实的和挑战性的,但不能安全地开车。在这项工作中,我们介绍努力,一种自动生成具有挑战性的场景的方法,导致给定的计划者产生不良行为,如冲突。为了维护情景合理性,关键的想法是利用基于图形的条件VAE的形式利用学习的交通运动模型。方案生成在该流量模型的潜在空间中制定了优化,通过扰乱初始的真实世界的场景来产生与给定计划者碰撞的轨迹。随后的优化用于找到“解决方案”的场景,确保改进给定的计划者是有用的。进一步的分析基于碰撞类型的群集生成的场景。我们攻击两名策划者并展示争取在这两种情况下成功地产生了现实,具有挑战性的情景。我们另外“关闭循环”并使用这些方案优化基于规则的策划器的超参数。
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译