稀疏矩阵分解是近似矩阵$ \ mathbf {z} $ j $稀疏因素$ \ mathbf {x} ^ {(j)} \ mathbf {x} ^ {(j-1)的乘积的问题} \ ldots \ mathbf {x} ^ {(1)} $。本文旨在鉴于在稀疏限制问题良好地提出的情况下更好地理解,鉴于此问题的可识别性问题。我们提供了将矩阵分解成\ emph {两个}稀疏因素的问题承认唯一的解决方案,最多达到不可避免的置换和缩放等效命令。我们的一般框架考虑了一系列规定的稀疏模式,允许我们捕获更多的稀疏性概念,而不是简单的非零条目的计数。这些条件被证明与精确矩阵分解的基本唯一性有关,以秩一矩阵的总和,具有结构的稀疏性约束。特别地,在固定支持稀疏矩阵分子的情况下,我们基于秩一矩阵完成性为可识别性提供一般的条件,并且我们从它源自完井算法,可以验证是否满足此充分条件,并恢复如果是这种情况,这两个稀疏因素中的条目。伴随文件进一步利用这些条件来导出用于多层稀疏矩阵分解的可识别性特性和理论上声音分解方法,以及与诸如Hadamard或离散傅里叶变换的一些众所周知的快速变换相关联的支持约束。
translated by 谷歌翻译
许多众所周知的矩阵$ Z $与FORMS $ z = x ^ j \ ldots x ^ 1 $相对应的快速变换相关联,其中每个因素$ x ^ \ ell $稀疏和可能结构化。本文研究了这种因素的基本独特性。我们的第一个主要贡献是证明具有所谓的蝴蝶结构的任何$ n \ times n $矩阵承认为$ j $蝴蝶因子(其中$ n = 2 ^ $),并且这些因素可以是通过分层分解方法恢复。这与现有的方法形成对比,其通过梯度下降将蝴蝶因子产品拟合到给定基质的乘积。该提出的方法可以特别应用于检索Hadamard或离散傅里叶变换矩阵的尺寸为2 ^ j $的分解。计算此类构建的成本$ \ mathcal {o}(n ^ 2)$,它是密集矩阵 - 矢量乘法的顺序,而获得的因子化使能快速$ \ mathcal {o}(n \ log n)$矩阵 - 矢量乘法。此分层标识性属性依赖于最近建立的两层和固定支持设置中的简单标识性条件。虽然蝴蝶结构对应于每个因素的固定规定的支撑,但我们的第二款贡献是通过允许的稀疏模式的更多普通家庭获得可识别性结果,同时考虑到不可避免的诽谤歧义。通常,我们通过分层范式展示了分离傅里叶变换矩阵的蝴蝶分解矩阵为2 ^ j $承认为$ 2 $ 2 $-al-dialAlysity的$ 2 $-ad-assity时,将独特的稀疏因子分解为$ j $ factors。关于每个因素。
translated by 谷歌翻译
具有整流线性单元(Relu)非线性的神经网络由参数$ \ Theta $的矢量描述,并实现为分段线性连续函数$ r _ {\ theta}:x \ in \ mathbb r ^ {d} \ mapsto r _ {\ theta}(x)\ in \ mathbb r ^ {k} $。自然缩放和排列在参数$ \ theta $留下的实现不变,导致相同的参数类,产生相同的实现。这些考虑因而导致可识别性的概念 - 从其实现$ r _ {\} $的唯一知识中恢复(等价类别)$ \ theta $的能力。本文的总体目标是介绍任何深度的Relu神经网络,$ \ Phi(\ Theta)$的嵌入,即不变于缩放,并且提供网络实现的本地线性参数化。利用这两个关键属性,我们得出了一些条件,在这种情况下,深度relu网络确实可以从有限一组样本的实现的知识局部地识别$ x_ {i} \ in \ mathbb r ^ {d} $。我们在更深入的深度上研究了浅层案例,为网络建立了必要的和充分条件,从界限子集$ \ Mathcal X \ subseteq \ MathBB r ^ {d} $识别。
translated by 谷歌翻译
恢复来自简单测量的稀疏向量的支持是一个广泛研究的问题,考虑在压缩传感,1位压缩感测和更通用的单一索引模型下。我们考虑这个问题的概括:线性回归的混合物,以及线性分类器的混合物,其中目标是仅使用少量可能嘈杂的线性和1位测量来恢复多个稀疏载体的支持。关键挑战是,来自不同载体的测量是随机混合的。最近也接受了这两个问题。在线性分类器的混合物中,观察结果对应于查询的超平面侧随机未知向量,而在线性回归的混合物中,我们观察在查询的超平面上的随机未知向量的投影。从混合物中回收未知载体的主要步骤是首先识别所有单个组分载体的支持。在这项工作中,我们研究了足以在这两种模型中恢复混合物中所有组件向量的支持的测量数量。我们提供使用$ k,\ log n $和准多项式在$ \ ell $中使用多项式多项式的算法,以恢复在每个人的高概率中恢复所有$ \ ell $未知向量的支持组件是$ k $ -parse $ n $ -dimensional向量。
translated by 谷歌翻译
给定非负矩阵分解,$ r $和一个分解等级,$ r $,精确的非负矩阵分解(确切的NMF)将$ r $分解为两个非负矩阵的产品,$ c $和$ r $列,例如$ r = cs^\ top $。文献中的一个中心研究主题是这种分解是独特/可识别的条件,直到琐碎的歧义。在本文中,我们关注部分可识别性,即$ c $和$ s $的列的独特性。我们从化学计量学文献的基于数据的唯一性(DBU)定理开始研究。 DBU定理分析了确切NMF的所有可行解决方案,并依赖于$ C $和$ S $的稀疏条件。我们提供了最近出版的DBU定理限制版本的数学严格定理,仅依靠简单的稀疏性和代数条件:它适用于特定的确切NMF解决方案(与所有可行解决方案相对),并允许我们保证部分单列的独特性,$ c $或$ s $。其次,基于对受限制的DBU定理的几何解释,我们获得了新的局部可识别性结果。我们证明它比受限的DBU定理强,因为使用了精确的NMF进行适当的预处理。这种几何解释还导致我们在$ r = 3 $的情况下取得了另一个部分可识别性结果。第三,我们展示了如何顺序使用部分可识别性结果来确保$ c $和$ s $的更多列的可识别性。我们在几个示例中说明了这些结果,其中包括化学计量学文献的一个示例。
translated by 谷歌翻译
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard, because it contains vector cardinality minimization as a special case.In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is Ω(r(m + n) log mn), where m, n are the dimensions of the matrix, and r is its rank.The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this pre-existing concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
translated by 谷歌翻译
We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M . Can we complete the matrix and recover the entries that we have not seen?We show that one can perfectly recover most low-rank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys m ≥ C n 1.2 r log n for some positive numerical constant C, then with very high probability, most n × n matrices of rank r can be perfectly recovered by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold for arbitrary rectangular matrices as well. Our results are connected with the recent literature on compressed sensing, and show that objects other than signals and images can be perfectly reconstructed from very limited information.
translated by 谷歌翻译
许多基本的低级优化问题,例如矩阵完成,相位同步/检索,功率系统状态估计和鲁棒PCA,可以作为矩阵传感问题提出。求解基质传感的两种主要方法是基于半决赛编程(SDP)和Burer-Monteiro(B-M)分解的。 SDP方法患有高计算和空间复杂性,而B-M方法可能由于问题的非跨性别而返回伪造解决方案。这些方法成功的现有理论保证导致了类似的保守条件,这可能错误地表明这些方法具有可比性的性能。在本文中,我们阐明了这两种方法之间的一些主要差异。首先,我们提出一类结构化矩阵完成问题,而B-M方法则以压倒性的概率失败,而SDP方法正常工作。其次,我们确定了B-M方法工作和SDP方法失败的一类高度稀疏矩阵完成问题。第三,我们证明,尽管B-M方法与未知解决方案的等级无关,但SDP方法的成功与解决方案的等级相关,并随着等级的增加而提高。与现有的文献主要集中在SDP和B-M工作的矩阵传感实例上,本文为每种方法的独特优点提供了与替代方法的唯一优点。
translated by 谷歌翻译
由于其在输入空间子集上的功能的知识,因此可以根据情况,诅咒或祝福来恢复神经网络的参数权重和偏差的可能性。一方面,恢复参数允许更好的对抗攻击,并且还可以从用于构造网络的数据集中披露敏感信息。另一方面,如果可以恢复网络的参数,它可以保证用户可以解释潜在空间中的特征。它还提供基础,以获得对网络性能的正式保障。因此,表征可以识别其参数的网络以及其参数不能的网络是很重要的。在本文中,我们在深度全连接的前馈recu网络上提供了一组条件,在该馈电中,网络的参数是唯一识别的模型置换和正重型 - 从其实现输入空间的子集。
translated by 谷歌翻译
分析大型随机矩阵的浓度是多种领域的常见任务。给定独立的随机变量,许多工具可用于分析随机矩阵,其条目在变量中是线性的,例如基质 - 伯恩斯坦不平等。但是,在许多应用中,我们需要分析其条目是变量中多项式的随机矩阵。这些自然出现在光谱算法的分析中,例如霍普金斯等人。 [Stoc 2016],Moitra-Wein [Stoc 2019];并根据正方形层次结构的总和(例如Barak等。 [FOCS 2016],Jones等。 [焦点2021]。在这项工作中,我们基于Paulin-Mackey-Tropp(概率Annals of Poylibity of Poyliby of 2016],我们提出了一个通用框架来获得此类界限。 Efron-Stein不等式通过另一个简单(但仍然是随机)矩阵的范围来界定随机矩阵的规范,我们将其视为通过“区分”起始矩阵而引起的。通过递归区分,我们的框架减少了分析更简单的矩阵的主要任务。对于Rademacher变量,这些简单的矩阵实际上是确定性的,因此,分析它们要容易得多。对于一般的非拉多巴纳变量,任务减少到标量浓度,这要容易得多。此外,在多项式矩阵的设置中,我们的结果推广了Paulin-Mackey-Tropp的工作。使用我们的基本框架,我们在文献中恢复了简单的“张量网络”和“密集图矩阵”的已知界限。使用我们的一般框架,我们得出了“稀疏图矩阵”的边界,琼斯等人最近才获得。 [焦点2021]使用痕量功率方法的非平地应用,并且是其工作中的核心组成部分。我们希望我们的框架对涉及非线性随机矩阵浓度现象的其他应用有帮助。
translated by 谷歌翻译
我们根据计算一个扎根于每个顶点的某个加权树的家族而构成的相似性得分提出了一种有效的图形匹配算法。对于两个erd \ h {o} s-r \'enyi图$ \ mathcal {g}(n,q)$,其边缘通过潜在顶点通信相关联,我们表明该算法正确地匹配了所有范围的范围,除了所有的vertices分数外,有了很高的概率,前提是$ nq \ to \ infty $,而边缘相关系数$ \ rho $满足$ \ rho^2> \ alpha \ ailpha \大约0.338 $,其中$ \ alpha $是Otter的树木计数常数。此外,在理论上是必需的额外条件下,可以精确地匹配。这是第一个以显式常数相关性成功的多项式图匹配算法,并适用于稀疏和密集图。相比之下,以前的方法要么需要$ \ rho = 1-o(1)$,要么仅限于稀疏图。该算法的症结是一个经过精心策划的植根树的家族,称为吊灯,它可以有效地从同一树的计数中提取图形相关性,同时抑制不同树木之间的不良相关性。
translated by 谷歌翻译
由于机器学习,统计和科学的应用,多边缘最佳运输(MOT)引起了极大的兴趣。但是,在大多数应用中,MOT的成功受到缺乏有效算法的严重限制。实际上,MOT一般需要在边际K及其支撑大小n的数量中指数时间n。本文开发了一个关于“结构”在poly(n,k)时间中可溶解的一般理论。我们开发了一个统一的算法框架,用于通过表征不同算法所需的“结构”来解决poly(n,k)时间中的MOT,这是根据双重可行性甲骨文的简单变体所需的。该框架有几个好处。首先,它使我们能够证明当前是最流行的MOT算法的Sinkhorn算法比其他算法要在poly(n,k)时间中求解MOT所需的结构更严格。其次,我们的框架使得为给定的MOT问题开发poly(n,k)时间算法变得更加简单。特别是(大约)解决双重可行性Oracle是必要和足够的 - 这更适合标准算法技术。我们通过为三个通用类成本结构类别的poly(n,k)时间算法开发poly(n,k)时间算法来说明这种易用性:(1)图形结构; (2)设定优化结构; (3)低阶和稀疏结构。对于结构(1),我们恢复了Sindhorn具有poly(n,k)运行时的已知结果;此外,我们为计算精确且稀疏的解决方案提供了第一个poly(n,k)时间算法。对于结构(2) - (3),我们给出了第一个poly(n,k)时间算法,甚至用于近似计算。这三个结构一起涵盖了许多MOT的当前应用。
translated by 谷歌翻译
在这项工作中,我们研究了一个非负矩阵分解的变体,我们希望找到给定输入矩阵的对称分解成稀疏的布尔矩阵。正式说话,给定$ \ mathbf {m} \ in \ mathbb {z} ^ {m \ times m} $,我们想找到$ \ mathbf {w} \ in \ {0,1 \} ^ {m \ times $} $这样$ \ | \ mathbf {m} - \ mathbf {w} \ mathbf {w} ^ \ top \ | _0 $在所有$ \ mathbf {w} $中最小化为$ k $ -parse。这个问题结果表明与恢复线图中的超图以及私人神经网络训练的重建攻击相比密切相关。由于这个问题在最坏的情况下,我们研究了在这些重建攻击的背景下出现的自然平均水平变体:$ \ mathbf {m} = \ mathbf {w} \ mathbf {w} ^ {\ top $ \ mathbf {w} $ \ mathbf {w} $ k $ -parse行的随机布尔矩阵,目标是恢复$ \ mathbf {w} $上列排列。等效,这可以被认为是从其线图中恢复均匀随机的k $ k $。我们的主要结果是基于对$ \ MATHBF {W} $的引导高阶信息的此问题的多项式算法,然后分解适当的张量。我们分析中的关键成分,可能是独立的兴趣,是表示这种矩阵$ \ mathbf {w} $在$ m = \ widetilde {\ omega}(r)时,这一矩阵$ \ mathbf {w} $具有高概率。 $,我们使用Littlewood-Offord理论的工具和二进制Krawtchouk多项式的估算。
translated by 谷歌翻译
通过使用系统理论方法来解决,将隐藏的马尔可夫模型(HMM)降低到一个较小的维度的问题,该问题通过使用系统理论方法来解决相同的边缘,通过利用适当的代数表示概率空间的代数来解决HMM。我们提出了两种算法,这些算法返回由随机投影运算符获得的粗粒等效的HMM:第一返回模型,这些模型可重现给定输出过程的单个时间分布,而在第二个(多时间)分布中,则保留了第二个模型。还原方法不仅利用了观察到的输出的结构,而且还利用了后者的初始条件,每当后者已知或属于给定的子类时。最佳算法是针对一类HMM(即可观察到的)得出的。在一般情况下,我们提出的算法为我们分析的所有示例产生了最小的模型,并猜测它们的最优性。
translated by 谷歌翻译
我们研究由线性卷积神经网络(LCN)代表的功能家族。这些函数形成了从输入空间到输出空间的线性地图集的半代数子集。相比之下,由完全连接的线性网络表示的函数家族形成代数集。我们观察到,LCN代表的功能可以通过接受某些因素化的多项式来识别,我们使用此视角来描述网络体系结构对所得功能空间几何形状的影响。我们进一步研究了在LCN上的目标函数的优化,分析了功能空间和参数空间中的临界点,并描述了梯度下降的动态不变性。总体而言,我们的理论预测,LCN的优化参数通常对应于跨层的重复过滤器,或可以分解为重复过滤器的过滤器。我们还进行了数值和符号实验,以说明我们的结果,并对小体系结构的景​​观进行深入分析。
translated by 谷歌翻译
在本文中,我们考虑了一个$ {\ rm u}(1)$ - 连接图,也就是说,每个方向的边缘都赋予了一个单位模量复杂的数字,该数字在方向翻转下简单地结合了。当时,组合laplacian的自然替代品是所谓的磁性拉普拉斯(Hermitian Matrix),其中包括有关图形连接的信息。连接图和磁性拉普拉斯人出现,例如在角度同步问题中。在较大且密集的图的背景下,我们在这里研究了磁性拉普拉斯的稀疏器,即基于边缘很少的子图的光谱近似值。我们的方法依赖于使用自定义的确定点过程对跨越森林(MTSF)进行取样,这是一种比偏爱多样性的边缘的分布。总而言之,MTSF是一个跨越子图,其连接的组件是树或周期根的树。后者部分捕获了连接图的角不一致,因此提供了一种压缩连接中包含的信息的方法。有趣的是,当此连接图具有弱不一致的周期时,可以通过使用循环弹出的随机行走来获得此分布的样本。我们为选择Laplacian的自然估计量提供了统计保证,并调查了我们的Sparsifier在两个应用中的实际应用。
translated by 谷歌翻译
我们引入了与针孔摄像机中图像形成相关的代数几何对象的地图集。地图集的节点是代数品种或它们的消失理想,分别通过投影,消除,限制或专业化相互关联。该地图集为研究3D计算机视觉中的问题提供了一个统一的框架。我们通过完全表征来自三角剖分问题的部分地图集来启动地图集的研究。我们以几个空旷的问题和地图集的概括结束。
translated by 谷歌翻译
约束的张量和矩阵分子化模型允许从多道数据中提取可解释模式。因此,对于受约束的低秩近似度的可识别性特性和有效算法是如此重要的研究主题。这项工作涉及低秩近似的因子矩阵的列,以众所周知的和可能的过度顺序稀疏,该模型包括基于字典的低秩近似(DLRA)。虽然早期的贡献集中在候选列字典内的发现因子列,即一稀疏的近似值,这项工作是第一个以大于1的稀疏性解决DLRA。我建议专注于稀疏编码的子问题,在解决DLRA时出现的混合稀疏编码(MSC)以交替的优化策略在解决DLRA时出现。提供了基于稀疏编码启发式的几种算法(贪婪方法,凸起放松)以解决MSC。在模拟数据上评估这些启发式的性能。然后,我展示了如何基于套索来调整一个有效的MSC求解器,以计算高光谱图像处理和化学测量学的背景下的基于词典的基于矩阵分解和规范的多adic分解。这些实验表明,DLRA扩展了低秩近似的建模能力,有助于降低估计方差并提高估计因子的可识别性和可解释性。
translated by 谷歌翻译
潜在变量模型(LVM)的无监督学习被广泛用于表示机器学习中的数据。当这样的模型反映了地面真理因素和将它们映射到观察的机制时,有理由期望它们允许在下游任务中进行概括。但是,众所周知,如果不在模型类上施加限制,通常无法实现此类可识别性保证。非线性独立组件分析是如此,其中LVM通过确定性的非线性函数将统计上独立的变量映射到观察。几个伪造解决方案的家庭完全适合数据,但是可以在通用环境中构建与地面真相因素相对应的。但是,最近的工作表明,限制此类模型的功能类别可能会促进可识别性。具体而言,已经提出了在Jacobian矩阵中收集的部分衍生物的函数类,例如正交坐标转换(OCT),它们强加了Jacobian柱的正交性。在目前的工作中,我们证明了这些转换的子类,共形图,是可识别的,并提供了新颖的理论结果,这表明OCT具有防止虚假解决方案家族在通用环境中破坏可识别性的特性。
translated by 谷歌翻译
We consider the nonlinear inverse problem of learning a transition operator $\mathbf{A}$ from partial observations at different times, in particular from sparse observations of entries of its powers $\mathbf{A},\mathbf{A}^2,\cdots,\mathbf{A}^{T}$. This Spatio-Temporal Transition Operator Recovery problem is motivated by the recent interest in learning time-varying graph signals that are driven by graph operators depending on the underlying graph topology. We address the nonlinearity of the problem by embedding it into a higher-dimensional space of suitable block-Hankel matrices, where it becomes a low-rank matrix completion problem, even if $\mathbf{A}$ is of full rank. For both a uniform and an adaptive random space-time sampling model, we quantify the recoverability of the transition operator via suitable measures of incoherence of these block-Hankel embedding matrices. For graph transition operators these measures of incoherence depend on the interplay between the dynamics and the graph topology. We develop a suitable non-convex iterative reweighted least squares (IRLS) algorithm, establish its quadratic local convergence, and show that, in optimal scenarios, no more than $\mathcal{O}(rn \log(nT))$ space-time samples are sufficient to ensure accurate recovery of a rank-$r$ operator $\mathbf{A}$ of size $n \times n$. This establishes that spatial samples can be substituted by a comparable number of space-time samples. We provide an efficient implementation of the proposed IRLS algorithm with space complexity of order $O(r n T)$ and per-iteration time complexity linear in $n$. Numerical experiments for transition operators based on several graph models confirm that the theoretical findings accurately track empirical phase transitions, and illustrate the applicability and scalability of the proposed algorithm.
translated by 谷歌翻译